Может ли энергия гиббса быть положительной. Химическая термодинамика

Понятие свободной энергии Гиббса было введено в химию с целью объяснения возможности самопроизвольного или спонтанного протекания той или иной реакции. Расчет этой энергии требует знания изменения энтропии процесса и количества энергии, которое поглощается или выделяется при его осуществлении.

Джозайя Уиллард Гиббс

Свободная энергия, которая определяет возможность протекания различных процессов, обозначается большой буквой G. Она получила название энергии Гиббса в честь американского физика-теоретика XIX века Джозайя Уилларда Гиббса, который внес важнейший вклад в развитие современной теории термодинамики.

Интересно отметить, что первый свой тезис, после защиты которого Гиббс получил звание доктора философии, он написал о форме зубцов шестерен. В этом исследовании он использовал геометрические методы для разработки идеальной формы этих зубцов. Термодинамикой ученый начал заниматься лишь в возрасте 32 лет, и в этой области физики добился огромных успехов.

Основные понятия термодинамики

Стандартной энергией Гиббса называется энергия при стандартных условиях, то есть при комнатной температуре (25 ºC) и атмосферном давлении (0,1 МПа).

Для понимания основных принципов термодинамики следует также ввести понятия энтропии и энтальпии системы.

Под энтальпией следует понимать внутреннюю энергию системы, которая находится при данном давлении и в данном объеме. Обозначается эта величина латинской буквой H и равна U+PV, где U - внутренняя энергия системы, P - давление, V - объем системы.

Энтропия системы является физической величиной, которая характеризует меру беспорядка. Иными словами, энтропия описывает особенность расположения частиц, составляющих данную систему, то есть характеризует вероятность существования каждого состояния этой системы. Обозначается она обычно латинской буквой S.

Таким образом, энтальпия является энергетической характеристикой, а энтропия - геометрической. Отметим, что для понимания и описания протекающих термодинамических процессов, абсолютные значения энтропии и энтальпии не несут полезной информации, важны лишь величины их изменений, то есть ΔH и ΔS.

Термодинамические утверждения

Этот закон помогает понять, в каком направлении может произвольно протекать реакция, или же она будет находиться в равновесии. Следующие утверждения являются фундаментальными для термодинамики:

  • Второй закон термодинамики гласит, чтобы процесс в любой системе происходил произвольно, его энтропия должна увеличиваться, то есть ΔS​>0.
  • При постоянных температуре и давлении изменение энергии Гиббса системы определяется по формуле ΔG=ΔH−TΔS.
  • Если для какого-либо процесса ΔG
  • Направление произвольного протекания конкретной реакции может зависеть от температуры в системе.

Самопроизвольные процессы

В химии произвольно протекающими процессами называются те, которые происходят без внешнего подвода к ним энергии. Произвольность протекания говорит о вероятности такой возможности и никак не связано с кинетикой процесса. Так, он может протекать быстро, то есть иметь взрывной характер, но может протекать и очень медленно в течение тысяч и миллионов лет.

Классическим примером самопроизвольно протекающей реакции является превращение углерода в форме алмаза в углерод аллотропной модификации графита. Такая реакция идет настолько медленно, что за время своей жизни человек не заметит каких-либо изменений в исходном алмазе, поэтому и говорят, что алмазы - вечны, хотя если выждать достаточный промежуток времени, то можно увидеть, как блестящий камень становится черным, похожим на сажу графитом.

Выделение и поглощение энергии

Еще одним важным аспектом произвольно протекающих процессов является выделение или поглощение теплоты, в первом случае говорят об экзотермическом процессе, во втором случае - об эндотермическом, то есть речь идет о знаке изменения энтальпии ΔH. Заметим, что как экзотермические, так и эндотермические процессы могут протекать произвольно.

Ярким примером произвольно протекающего процесса является воспламенение топливной смеси в цилиндре двигателя внутреннего сгорания. В этой реакции выделяется большое количество тепловой энергии, которая преобразуется с КПД порядка 30% в механическую энергию, заставляя вращаться коленчатый вал. Последний передает крутящий момент через трансмиссию колесам автомобиля, и машина движется.

Примером эндотермической реакции, которая протекает самостоятельно с поглощением тепла, является растворение обычной поваренной соли NaCl в воде. В этой реакции ΔH = +3.87 кДж/моль > 0. Проверить этот факт можно, измерив температуру воды до растворения в ней соли и после ее растворения. Полученная разница конечной температуры и начальной окажется отрицательной.

Энергия Гиббса процесса

Если какой-либо процесс протекает в системе с постоянным давлением и температурой, тогда второй закон термодинамики можно переписать в следующем виде: G=H−TS. Величина G - свободная энергия Гиббса имеет размерность кДж/моль. Определение спонтанности протекания конкретной реакции зависит от знака изменения этой величины, то есть ΔG. В итоге второй закон термодинамики примет форму: ΔG​=ΔH​−TΔS. Возможны следующие случаи:

  • ΔG>0 - эндергоническая реакция, которая не может произвольно происходить в прямом направлении, но будет самостоятельно идти в обратном направлении с увеличением количества реагентов;
  • ΔG=0 - система находится в равновесии, и концентрации реагентов м продуктов остаются постоянными сколь угодно длительное время.

Анализ полученного уравнения

Введенное выражение для второго закона термодинамики позволяет определить, в каком случае процесс может протекать произвольно. Для этого необходимо проанализировать три величины: изменение энтальпии ΔH, изменение энтропии ΔS и температура T. Заметим, что температура выражается в абсолютных единицах по международной системе мер и весов, то есть в Кельвинах, поэтому она является всегда положительной величиной.

Направление протекания реакции не зависит от температуры если:

  • Реакция является экзотермической (ΔH 0). В таком случае процесс произвольно идет всегда в прямом направлении;
  • Реакция эндотермического характера (ΔH>0) и изменение ее энтропии отрицательное (ΔS

Если же знаки изменения величин ΔH и ΔS совпадают, тогда уже температура играет важную роль в возможности протекания такого процесса. Так, экзотермическая реакция будет идти произвольно при низких температурах, а экзотермическая реакция - при высоких.

Расчет таяния льда

Хорошим примером реакции, в которой знак энергии Гиббса зависит от температуры, является таяние льда. Для такого процесса ΔH = 6,01 кДж/моль, то есть реакция эндотермическая, ΔS = 22,0 Дж/моль*К, то есть процесс происходит с увеличением энтропии.

Вычислим для таяния льда температуру, при которой изменение энергии Гиббса будет равно нулю, то есть система будет находиться в равновесном состоянии. Из второго закона термодинамики получаем: T = ΔH/ΔS, подставляя значения указанных величин, вычисляем T = 6,01/0,022 = 273,18 K.

Если перевести температуру из Кельвинов в привычные градусы Цельсия, получим 0 ºC. То есть при температуре выше этого значение ΔG 0, и произвольно уже будет идти обратный процесс, то есть кристаллизация жидкой воды.

ПЛАН

ВВЕДЕНИЕ 2

ЭНЕРГИЯ ГИББСА 3

ЗАКЛЮЧЕНИЕ 14

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 15

ВВЕДЕНИЕ

В своем реферате я расскажу об энергии Гиббса.

Гиббс Джозайя Уиллард (1839-1903), американский физик-теоретик, один из создателей термодинамики и статистической механики. Разработал теорию термодинамических потенциалов, открыл общее условие равновесия гетерогенных систем - правило фаз, вывел уравнения Гиббса - Гельмгольца, Гиббса - Дюгема, адсорбционное уравнение Гиббса. Установил фундаментальный закон статистической физики - распределение Гиббса. Предложил графическое изображение состояния трехкомпонентной системы (треугольник Гиббса). Заложил основы термодинамики поверхностных явлений и электрохимических процессов. Ввел понятие адсорбции.

ЭНЕРГИЯ ГИББСА

В начале своей работы я думаю необходимо представить основные понятия теории Гиббса.

ПРАВИЛО ФАЗ ГИББСА в термодинамике: число равновесно сосуществующих в какой-либо системе фаз не может быть больше числа образующих эти фазы компонентов плюс, как правило, 2. Установлено Дж. У. Гиббсом в 1873-76.

ГИББСА ЭНЕРГИЯ (изобарно-изотермический потенциал, свободная энтальпия), один из потенциалов термодинамических системы. Обозначается G , определяется разностью между энтальпией H и произведением энтропии S на термодинамическую температуру Т : G = H - T·S . Изотермический равновесный процесс без затраты внешних сил может протекать самопроизвольно только в направлении убывания энергии Гиббса до достижения ее минимума, которому отвечает термодинамическое равновесное состояние системы. Названа по имени Дж. У. Гиббса.

ПОТЕНЦИАЛЫ ТЕРМОДИНАМИЧЕСКИЕ, функции объема, давления, температуры, энтропии, числа частиц и других независимых макроскопических параметров, характеризующих состояние термодинамической системы. К потенциалам термодинамическим относятся внутренняя энергия, энтальпия, изохорно-изотермический потенциал (Гельмгольца энергия), изобарно-изотермический потенциал (Гиббса энергия). Зная какие-либо потенциалы термодинамические как функцию полного набора параметров, можно вычислить любые макроскопические характеристики системы и рассчитать происходящие в ней процессы.

РАСПРЕДЕЛЕНИЕ ГИББСА каноническое, распределение вероятностей различных состояний макроскопической системы с постоянным объемом и постоянным числом частиц, находящейся в равновесии с окружающей средой заданной температуры; если система может обмениваться частицами со средой, то распределение Гиббса называется большим каноническим. Для изолированной системы справедливо Гиббса распределение микроканоническое, согласно которому все микросостояния системы с данной энергией равновероятны. Названо по имени открывшего это распределение Дж. У. Гиббса.

Реакции присоединения радикалов к непредельным соединениям лежат в основе современной технологии получения полимеров, сополимеров и олигомеров. Эти реакции протекают при крекинге углеводородов, галоидировании олефинов, окислении непредельных соединений. Они широко используются в синтезе разнообразных соединений и лекарственных препаратов. Реакции присоединения атомов водорода и гидроксильных соединений к непредельным и ароматическим соединениям сопровождают фотолиз и радиолиз органических материалов и биологических объектов.

рвется двойная С=С-связь и образуется связь С X. Как правило, образующаяся
 -связь прочнее рвущейся  -С С-связи, и поэтому реакция присоединения экзотермична. Это четко видно из сравнения энтальпии реакции Н и прочности образующейся связи D (EtX) в табл. 1.

Другой важный фактор, влияющий на энтальпию реакции, энергия стабилизации образующегося радикала XCH 2 C  H 2 Y: чем больше эта энергия, тем больше теплота присоединения радикала X  к олефину. Энергию стабилизации можно охарактеризовать, например, разницей прочности связей C H в соединениях Pr H и EtYHC H. Ниже приведены данные, характеризующие вклад энергии стабилизации радикала CH 3 CH 2 C  H 2 Y, образующегося в результате присоединения метильного радикала к мономеру CH 2 =CHY, в энтальпию этой реакции.

Таблица 1.

Энтальпия, энтропия и энергия Гиббса присоединения атомов и радикалов X к этилену.

X

H ,

кДж моль  1

S ,

Дж моль  1 К  1

G (298 K),

кДж моль  1

H

Cl

C H 3

Me 2 C H

PhC H 2

N H 2

HO

CH 3 O

HO 2

Видно, что чем больше энергия стабилизации радикала, тем меньше энтальпия реакции.

Все реакции присоединения протекают с уменьшением энтропии, т. к. происходит соединение двух частиц в одну (см. табл. 8.1). В силу этого для реакций присоединения энергия Гиббса, и при достаточной высокой температуре экзотермическая реакция присоединения является обратимой, т. к. G = H T S .

На любой процесс (реакцию) действуют два фактора:

Энатльпийный (экзо- или ендо) – Δ H ;

Энтропильный (ТΔS ).

При объединении этих двух факторов получаем:

ΔН – ТΔS = ΔG

G = H – TS – Энергия Гиббса.

Физический смысл Энергии Гиббса:

Вывод: состояние термодинамического равновесия чрезвычайно устойчиво, так как при постоянстве Р, Т система выйти из равновесного состояния не может, так как выход равен возрастанию энергии Гиббса.

Чтобы система вышла из состояния равновесия необходимо изменить какие-либо внешние факторы (Р, Т, концентрация и так далее).

Есть понятие стандартное состояние Гиббса:

ΔG f 0 298 [кДж / моль] – справочная величина.

ΔG 298 = Σn i Δ * ΔG f 0 298 – Σn j Δ * ΔG f 0 298

продукт реагент

большинство процессов протекает при t более высоких чем стандартная (298). Для пересчета энергии Гиббса на более высокие температуры необходимы справочные данные по теплоемкостям, данные представленные в виде зависимости от температуры.

В справочниках эти данные обычно представлены в виде степенного ряда.

C p 0 = a + bT + cT 2 + c’ Т -2

где a , b , c , c ’ – для каждого вещества свои.

ΔC p 0 = Δa + ΔbT + ΔcT 2 + Δc ’Т -2

Где Δa , Δb , Δc , Δc ’ - будучи функциями состояния, рассчитываются по формулам:

Δa = Σn i а - Σn j а

продукт реагент

Δb = Σn i b - Σn j b

продукт реагент

Δc = Σn i c - Σn j c

продукт реагент

Термодинамика фазовых равновесий. Фазовые равновесия в гетерогенных системах. Правило фаз Гиббса.

К фазовым равновесиям относятся переходы типа:

    Твердая фаза в равновесии с жидкостью (плавление – кристаллизация);

    Жидкая фаза в равновесии с паром (испарение – конденсация);

    Твердая фаза в равновесии с паром (возгонка – сублимация).

Основные понятия правила фаз:

Фаза (Ф) – это часть системы, имеющая границы раздела с другими ее частями.

Компонент (к) – это химически однородная составляющая системы, обладающая всеми ее свойствами.

Число степеней свободы (С) – это число независимых переменных которые можно произвольно менять не меняя числа фаз в системе.

(С, Ф, К) С = К – Ф +2

Существует правило фаз Гиббса.

Различают однокомпонентные, двухкомпонентные, трехкомпонентные системы (К=1, К=2, К=3).

С min = 1 – 3 + 2 = 0

C max = 1 – 1 + 2 = 2

Для описания однокомпонентных систем выбрали координаты:

Р (давление насыщенного пара)

Т (температура)

dP / dT = ΔH ф.п. / (T ф.п. * ΔV )

эта зависимость сохраняется в силе для абсолютно всех фазовых переходов.

Р c

Тв. Ж. a

b Пар

Каждая линия диаграммы отвечает своему фазовому переходу:

Оb Тв. – Ж.

Оа Ж. - Пар

Ос Тв. - Пар

Поля диаграммы: твердая фаза, жидкая фаза, пар.

Т кр.: Пар – Газ

Поле фазы:

С = 2 (на полях С max )

C = 1 (на линиях)

Точка О – отвечает равновесию трех фаз: Тв. – Ж – Пар.

С = 0 – это значит, что нельзя менять ни температуру ни давление.

Остановимся теперь на химическом потенциале - величине, определяющей термодинамические характеристики не системы в целом, а одной молекулы в этой системе.

Если добавлять в систему молекулу за молекулой при постоянном давлении , то на добавление каждой новой частицы надо затратить в точности ту же работу, что на добавление любой предыдущей: объем системы будет расти, а плотность системы - и интенсивность взаимодействий в ней - меняться не будет. Поэтому термодинамическое состояние молекулы в системе удобно определять величиной свободной энергии Гиббса G, деленной на число молекул N,

m = G/N

называемой химическим потенциалом (а так как в жидкой или твердой фазе и невысоких давлениях F » G , то здесь m » F/N ). Если N означает не число молекул, а, как обычно, число молей молекул, то и m относится не к одной молекуле, а к молю молекул.

Химический потенциал - или, что то же самое, свободная энергия Гиббса в расчете на одну молекулу - нам пригодится во второй части сегодняшней лекции, когда речь пойдет о распределении молекул между фазами. Дело в том, что молекулы перетекают из той фазы, где их химический потенциал выше, в ту, где их химический потенциал ниже, - это понижает общую свободную энергию системы и приближает ее к равновесию. А в равновесии химический потенциал молекул в одной фазе равен химическому потенциалу тех же молекул в другой фазе.

В последнее время при изучении свойств пластифицированных систем были обнаружены экспериментальные факты, противоречащие общепринятым представлениям и в ряде случаев не получившие должного объяснения. Это касается термодинамики пластифицированных систем, определения температуры стеклования (Т с) и оценки свойств систем, содержащих относительно небольшие количества пластификатора. Факты эти имеют большое значение для практики и теории, они связаны с метастабильностью пластифицированных систем и с неправильным использованием некоторых методов изучения их свойств.

Известно, что все системы делятся на устойчивые или стабильные, неустойчивые или лабильные и метастабильные, которые наиболее распространены. Поэтому изучение теплофизических свойств метастабильных систем имеет большое значение.

Метастабильная система устойчива по отношению ко всем системам, бесконечно мало отличающимся от нее, но имеется по крайней мере одна система, по отношению к которой она неустойчива. Состояние А, обладающее наименьшей энергией Гиббса, является истинно устойчивым, а состояние Б, обладающее большей энергией Гиббса, - метастабильным состоянием по отношению к состоянию А. Однако для перехода системы из состояния Б в состояние А требуется преодолеть потенциальный барьер. Если энергия возмущения меньше потенциального барьера, то система остается в состоянии Б.

Стабильность таких систем зависит от соотношения времени релаксации (р) и времени опыта (оп); под временем опыта подразумевается не только время лабораторного опыта, но и время хранения и эксплуатации изделия. Если
р >> оп, то система может находиться в метастабильном состоянии неограниченное время и она ничем не отличается от истинно устойчивой системы. Поэтому к ней не следует применять термин "неравновесная". Наоборот, в настоящее время широко распространен термин "метастабильное равновесие". Система в состоянии А находится в истинном равновесии, а система в состоянии Б - в метастабильном равновесии.
Метастабильное состояние является типичным для полимерных систем вследствие очень большого размера макромолекул полимеров и значительных р. Такие системы, например, можно получить закалкой, т.е. быстрым охлаждением полимера или полимерной смеси до температуры значительно ниже их Т с. При этом не изменяется структура системы и сохраняется приданная ей при более высокой температуре структура. Это означает, что система "помнит" свое прошлое. Такие системы называют системами с "памятью". Исследованию их свойств посвящено много работ, разрабатывается термодинамика этих систем. Эти свойства зависят от предыстории систем. К системам с памятью относятся все полимеры и полимерные композиции, находящиеся при температуре намного ниже их Тс. Время релаксации происходящих в них процессов очень велико, в связи с чем стеклообразные полимеры при Т << Тс рассматривают как равновесные. К таким системам применимы законы классической термодинамики.

Большое значение имеет термодинамическое сродство полимера к пластификатору, которое оценивают теми же параметрами, что и сродство полимера к растворителям: величиной и знаком энергии Гиббса (G ) смешения параметром взаимодействия Флори-Хаггинса (1), вторым вириальным коэффициентом (А 2). Величину G можно определить двумя способами. Первый способ состоит в прямом определении G на основании экспериментальных данных по давлению пара пластификатора над пластифицированной системой или по давлению набухания. Пластификаторы являются труднолетучими жидкостями, поэтому измерение их малых давлений требует специальных методов. Метод эффузии, который для этой цели применяется, имеет много недостатков. Более точным является метод определения давления набухания, давно используемый при изучении свойств пластифицированных эфиров целлюлозы. Он был успешно применен при исследовании сродства вулканизаторов каучуков к различным растворителям.

Определение G пластифицированных полимеров можно осуществлять с помощью метода, предложенного для смесей полимеров. Для этого следует измерить G смешения полимера, пластификатора и их смесей с какой-либо низкомолекулярной жидкостью, неограниченно смешивающейся с ними. Энергию Гиббса смешения можно определять на основании данных по светорассеянию растворов. Этот метод, представленный Вуксом для системы жидкость- жидкость, впервые был использован для систем полимер-растворитель в работе.

Второй способ определения величины G состоит в расчете этого параметра на основании экспериментально измеренных энтальпии и энтропии смешения полимера с пластификатором. Ее рассчитывают по уравнению: G = H - TS. Энтальпию смешения рассчитывают по закону Гесса, как описано выше, энтропию смешения определяют на основании температурной зависимости теплоемкости пластифицированных систем, измеренной с помощью сканирующего калориметра. Этот метод заслуживает внимания. Однако в рамках классической термодинамики абсолютные значения энтропии можно получить только при экстраполяции экспериментальной температурной зависимости теплоемкости к абсолютному нулю. В работе это было сделано, а в работе использован приближенный способ расчета величин S 0 , когда все величины энтропии приняты без нулевых слагаемых. Это может привести к ошибкам. Из изложенного следует, что необходимо развивать различные методы, которые должны давать одинаковые результаты. Для этого необходимо результаты, полученные разными методами, сопоставлять и систематически обсуждать.

ЗАКЛЮЧЕНИЕ

В своей работе я рассмотрела энергию Гиббса и относящиеся к этой теории понятия. Я рассказала о термодинамические потенциалы, правила фаз, распределение Гиббса, энтальпию, энтропию и конечно саму энергию Гиббса.

Вклад Джозайи Уилларда Гиббса в науку имеет большое значение. Его труды и исследования послужили основой для научных разработок его последователей, а так же имеют практическое значение.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ:

    Теплофизика метастабильных жидкостей. Свердловск, УНЦ АН СССР, 1987.

    Пригожин И., Дефей Р. Химическая термодинамика. Пер. с англ. Под ред. В.А. Михайлова. Новосибирск, Наука, 1966.

    Кубо Р. Термодинамика. Пер. с англ. Под ред. Д.М. Зубарева, Н.М. Плакиды. М. Мир, 1970.

    Тагер А.А. Высокомолекул. соед., 1988, т. А30, № 7, с. 1347.

    Тагер А.А. Физикохимия полимеров. М., Химия, 1978.

    Новикова Л.В. и др. Пласт. массы, 1983, № 8, с. 60.

    энергии Гиббса в следующей форме: изменение энергии Гиббса при образовании заданных... любого из термодинамических потенциалов: внутренней энергии U, энтальпии H, энергии Гиббса G, энергии Гельмгольца А при условии постоянства...

  1. Термодинамика химической устойчивости сплавов системы Mn-Si

    Дипломная работа >> Химия

    ... Энергии Гиббса реакций 2 и 3 описываются уравнениями температурной зависимости: Энергия Гиббса реакции 1 может быть найдена комбинированием энергий Гиббса ... атм. Подставляя в выражения для энергий смешения значения энергий Гиббса реакций (1) – (4), получаем...

  2. Коллоидная химия. Конспект лекций

    Конспект >> Химия

    Всегда >0. Внутренняя поверхностная энергия единицы поверхности больше поверхностной энергии Гиббса (*) на теплоту образования... , поэтому уравнение Гиббса -Гельмгольца(**), связывающее полную поверхностную энергию или энтальпию с энергией Гиббса в этом случае...

Энергией Гиббса реакции называется изменение энергии Гиббса ΔG при протекании хими-ческой реакции. Так как энергия Гиббса системы G = Н - TS, её изменение в процессе определяется по формуле: ΔG = ΔH-TΔS (4.1)

где Т - абсолютная температура в Кельвинах.

Энергия Гиббса химической реакции характеризует возможность её самопроизвольного проте-канияпри постоянных давлении и температуре. Если ΔG<0, то реакция может протекать самопроиз-вольно, при ΔG>0 самопроизвольное протекание реакции невозможно, если же ΔG = 0, система на-ходится в состоянии равновесия.

Для расчёта энергии Гиббса реакции по формуле (4.1) отдельно определяются ΔН и ΔS. При этом в практических расчётах пользуются приближениями (2.4) и (3.4).

Пример 4.1. Расчёт энергии Гиббса реакции, выраженной уравнением 4NH 3 (г) + 5O 2 (г) = 4NO(г) + + 6Н 2 O(г), при давлении 202.6 кПа и температуре 500°С (773К).

Согласно условию, реакция протекает при практически реальных значениях давления и темпе-ратуры. при которых допустимы приближения (2.4) и (3.4), т.е.

Δ Н 773 ≈ Δ Н 0 298 = - 904.8 кДж = - 904800 Дж. (см. пример 2.2),

а Δ S 773 ≈ Δ S 0 298 = 179,77 Дж/К. (см. пример 3.1).

После подстановки значений Δ H 0 298 и Δ S° 298 в формулу (4.1) получаем:

Δ G 773 = Δ H 773 -773 Δ S 773 ≈ Δ Н 0 298 -773 Δ S 0 298 = - 904800 - 773*179, 1043762 Дж = - 1043,762 кДж.

Полученное отрицательное значение энергии Гиббса реакции Δ G 773 указывает на то, что дан ная реакция в рассматриваемых условиях может протекать самопроизвольно.

Если реакция протекает в стандартных условиях при температуре 298К, расчёт её энергии Гиббса (стандартной энергии Гиббса реакции) можно производить аналогично расчёту стандартной теплоты реакции по фрмуле, котораядля реакции, выраженной уравнением аА + ЬВ = сС + dD, имеет вид:

ΔG ° 298 = (cΔG ° 298,o6p,C + dΔG ° 298,o6p,D) - (aΔG 298,обрА + bΔG° 298,обр,в) (4.2)

где Δ G ° 298, o6p. - стандартная энергия Гиббса образования соединения в кДж/моль (табличные значе-ния) - энергия Гиббса реакции, в которой при температуре 298К образуется 1 моль данного соеди-нения, находящегося в стандартном состоянии, из простых веществ, также находящихся в стан-дартных состояниях 4 *, a Δ G° 298 - стандартная энергия Гиббса реакции в кДж.

Пример 4.2. Расчёт стандартной энергии Гиббса реакции, протекающей по уравнению: 4NH 3 (г) + 5O 2 (г) = 4NO(г) + + 6Н 2 O(г).


В соответствии с формулой (4.2) записываем:

Согласно определению, стандартная энергия Гиббса образования простых веществ равна нулю.

ΔG 0 298 O 2 в выражении не фигурирует ввиду ее равенства нулю

ΔG 0 298 = (4 ΔG 0 298 . no + 6 ΔG 0 298. H 2 O) - 4 ΔG 0 298. NH з После подстановки табличных значений ΔG 0 298 .обР получаем: ΔG 0 298 = (4 (86,69) + 6 (-228, 76)) - 4 (-16,64) = - 959.24 кДж. По полученному результату видно, что так же, как и в примере 4.1, в стандартных условиях рассматриваемая реакция может протекать самопроизвольно

По формуле (4.1) можно определить температурный диапазон самопроизвольного протека-ния реакции. Так как условием самопроизвольного протекания реакции является отрицательность ΔG (ΔG<0), определение области температур, в которой реакция может протекать самопроизвольно, сво-дится к решению неравенства (ΔH-TΔS)

Пример 4.3. Определение температурной области самопроизвольного протекания реакции, вы-раженной уравнением: СаСО 3 (т) = СаО(т) + СO 2 (г).

Находим ΔH u ΔS. ΔH ≈ ΔH° 298 = (ΔН 0 298 , СаО + ΔН° 298, CO 2) - ΔН° 298 , CaCO 3 = (-635,1 + (-393,51)) - (-1206) = 177,39кДж = 177390 Дж; ΔS ≈ ΔS 0 298 = (S 0 298 , СаО + S 0 298.С02) - S 0 298 ,СаСОз = (39,7 + 213,6)- 92,9 = 160,4 Дж/К. Подставляем значения ΔН и ΔS в неравенство и решаем его относительно Т: 177390 - Т*160,4<0, или 177390<Т*160,4, или Т>1106. Т.е. при всех температурах, больших 1106К, бу-дет обеспечиваться отрицательность ΔG и, следовательно, в данном температурном диапазоне бу-дет возможным самопроизвольное протекание рассматриваемой реакции.

Методические указания и задания к контрольной работе по химии: Закономерности химических процессов.

I. Методические указания.

Общие положения.

Закономерности химических процессов являются предметом изучения двух разделов хи­мии: химической термодинамики и химической кинетики.

Химическая термодинамика изучает энергетические эффекты реакций, их направ­ление и пределы самопроизвольного протекания.

Объект изучения в химической термодинамике - термодинамическая система (в дальнейшем просто система) - это совокупность взаимодействующих веществ, мысленно или реально обособленная от окружающей среды.

Система может находиться в различных состояниях. Состояние системы определяется численными значениями термодинамических параметров: температуры, давления, концен­траций веществ и пр. При изменении значения хотя бы одного из термодинамических параметров, например, температуры происходит изменение состояния системы. Изменение состояния системы называется термодинамическим процессом или просто процессом.

Процессы могут протекать с различными скоростями. Изучением скоростей процессов и факторов, влияющих на них, занимается раздел химии, называемый химической кинетикой.

В зависимости от условий перехода системы из одного состояния в другое, в химической термодинамике различают несколько типов процессов, простейшими из которых являются изо­термический, протекающий при постоянной температуре (Т=соnst), изобарный, протекающий при постоянном давлении (р=соnst), изохорный, протекающий при постоянном объёме (V=соnst) и адиабатический, который осуществляется без обмена теплотой между системой и окружающей средой (q=соnst). Наиболее часто в химической термодинамике реакции рассматриваются как изобарно-изотермические (р=соnst, Т==соnst) или изохорно-изотермические (V=соnst, Т==соnst) процессы.

Чаще всего в химической термодинамике рассматриваются реакции, притекающие в стандартных условиях, т.е. при стандартной температуре и стандартном состоянии всех веществ. В качестве стандартной принята температура 298К. Стандартным состоянием вещества является его состояние при давлении 101,3 кПа. Если вещество находится в растворе, за стан­дартное принимается его состояние при концентрации 1 моль/л.

Предметом рассмотрения химической термодинамики являются процессы. Для ха­рактеристики процессов химическая термодинамика оперирует особыми величинами, называе­мыми функциями состояния: U - внутренняя энергия. Н - энтальпия, S - энтропия, G - энергия Гиббса и F - энергия Гельмгольца. Количественными характеристиками любого процесса являются изменения функций состояния, которые и определяются методами химической термодинамики: rU, rH, rS, rG, rF.

2. Термохимические расчёты.

(Задачи №№1-20)

Термохимический расчёт заключается в определении теплового эффекта реакции (теплоты реакции). Теплотой реакции, называется количество выделенной или поглощённой теплоты q. Если в ходе реакции теплота выделяется, такая реакция называется экзотермической, если теплота, поглощается, реакция называется эндотермической.

Численное значение теплоты реакции зависит от способа её проведения. В изохорном процессе, проводимом при V=соnst, теплота реакции qv = rU, в изобарном процессе при
р =
соnst тепловой эффект qp = rH. Таким образом, термохимический расчёт заключается в определении величины изменения или внутренней энергии, или энтальпии в ходе реакции. Поскольку подавляющее большинство реакций протекает в изобарных условиях (например, это все реакции в открытых сосудах, протекающие под атмосферным давлением), при проведении термохимических расчётов практически всегда производится расчёт rН. Если rН < 0, то реакция экзотермическая, если же rН > 0, то реакция эндотермическая.

Термохимические расчёты производятся, используя следствие из закона Гесса: тепловой эффект реакции равен сумме теплот (энтальпий) образования продуктов реакции за вычетом суммы теплот (энтальпий) образования реагентов.

Запишем в общем виде уравнение реакции: аА + bВ = сС + dD. Согласно следствию из закона Гесса теплота реакции определяется по формуле:

rН = (c rН обр, С + d rН обр, D) - (а rН обр,А + b rН обр,В) (2.1)

гдеrН - теплота реакции; rН обр - теплоты (энтальпии) образования, соответственно, продуктов реакции С и D и реагентов А и В; с, d, а, b - коэффициенты в уравнении реакции, называемые стехиометрическим и коэффициентами.

Базовыми величинами в формуле (2.1) являются теплоты (энтальпии) образования реагентов и продуктов.Теплотой (энтальпией) образования соединения называется тепловой эффект реакции, в ходе которой образуется 1 моль этого соединения из простых веществ, находящихся в термодинамически устойчивых фазах и модификациях 1) . Например, теплота образования воды в парообразном состоянии равна половине теплоты реакции, выражаемой уравнением: 2Н 2 (г) + О 2 (г) = 2Н 2 О (г). Размерность теплоты образования - кДж/моль.

В термохимических расчётах теплоты реакций, как правило, определяются для стандартных условий, для которых формула (2.1) приобретает вид:

rН ° 298 = (С rН ° 298,обр,С + d rН ° 298,обр,D) - (а rН ° 298,о6р,A + b rН ° 298, обр,В) (2.2)

где rН° 298 - стандартная теплота реакции в кДж (стандартность величины указывается верхним индексом "О") при температуре 298К. а rН° 298,обр. - стандартные теплоты (энтальпии) образования соединений также при температуре 298К. Значения rН°298,обр. определены для всех соединений и являются табличными данными. 2)

Пример 2.1. Расчёт стандартного теплового эффекта реакции, выраженной уравнением: СаСО 3 (т) =СаО(т) + СО 2 (г).

В соответствии со следствием из закона Гесса записываем:

rН 0 298 = ( rН ° 298,обр,С аО + rН ° 298,обр.СО2) - rН° 298,обр,СаСО3

Подстановка в записанную формулу табличных значений стандартных теплот образования соединений приводит к следующему результату:

rН° 298 = ((-635,1) + (-393,51)) - (-1206) = 177,39 кДж.

Как видно, rН° 298 > 0, что указывает на эндотермический характер данной реакции.

В термохимии тепловые эффекты принято указывать в уравнениях реакций. Такие уравнения с обозначенным тепловым эффектом называются термохимическими.

Термохимическое уравнение рассматриваемой реакции записывается:

СаСО3(т) = СаО(т) + СО 2 (г); rН° 298 = 177,39 кДж.

Пример 2.2. Расчёт стандартной теплоты реакции выраженной уравнением :

4NH 3(г) + 5О 2 (г) = 4NO(г) + 6Н 2 О(г).

Согласно следствию из закона Гесса записываем 3) :

rН° 298 = (4rН° 298 ,обр. N О + 6rН ° 298,обр, H 2 O) - 4rН° 298 ,об, NH 3

Подставив табличные значения стандартных теплот образования соединений, представленных в формуле, получим:

rН° 298 = (4(90,37) + 6(-241,84)) - 4(-4б,19) = - 904.8 кДж.

Отрицательный знак теплоты реакции указывает на экзотермичность процесса.

Записываем термохимическое уравнение данной реакции

4NH3(г) + 5О 2 (г) = 4NO(г) + 6Н 2 О(г); rН° 298 = - 904,8 кДж

_______________________________________________________________________________

1) Состояния веществ в уравнениях реакций указываются с помощью буквенных индексов: (к) - кристаллическое, (т) - твёрдое, (ж) - жидкое, (г) - газообразное, (р) - растворённое.

2) По определению, rН° 298 ,обр. простых веществ равны нулю.

3) Н° 298 ,обр,О2 в формуле не фигурирует ввиду её равенства нулю.


Тепловой эффект в термохимическом уравнении относится к количествам веществ, обозначенным стехиометрическими коэффициентами. Так, в рассмотренном примере 2.2.запись rН° 298 = - 904,8 кДж означает, что такое количество теплоты выделяется, если взаимодействуют 4 моля NНз с 5 молями О 2 , в результате чего образуется 4 моля NO и 6 молей Н 2 О. Если же количества участников реакции будут иными, другим будет и значение теплового эффекта.

Пример 2.3. Расчёт теплоты реакции, рассмотренной в. примере 2.2., если:

а) в реакции участвуют 2 моля О 2 ;

Ь) в реакции участвуют 34г. NН з;

с) в реакции образуется 11,2л. NO.

Пусть х - неизвестное значение теплового эффекта, которое находится из следующих пропорций:

а) Решается пропорция: 2/5 = х (-904,8). Откуда х = 2(-904,8)/5 = - 361,92 кДж.

b) По массе 1 моль NH 3 равен 17г. (масса 1 моля в граммах численно равна сумме атомных масс). Следовательно, число молей NH 3 , участвующих в реакции, равно:

п = 34/17 = 2. Согласно этому составляем пропорцию: 2/4 = х/(-904,8).
Откуда х = 2(-904,8)/4
= - 452,4 кДж.

с) В соответствии с законом Авогадро, 1 моль любого газа при нормальных условиях занимает объём 22,4 литра. Поэтому число молей NO образующихся в реакции, равно:

п = 11,2/22,4 = 0,5 . Составляем пропорцию: 0,5/4 = х/(-904,8). Откуда х = 0,5(-904,8)/4 = -113,1 кДж.

Тепловые эффекты реакций конечно же зависят от условий их протекания, однако эта за­висимость выражена слабо. В интервале температур и давлений, имеющем практическое значение, изменение величины теплоты реакций, как правило, не превышает 5%. Поэтому в большинстве термохимических расчётов для любых условий величину теплоты реакции принимают равной стандартному тепловому эффекту.

Энергия Гиббса химической реакции.

(Задачи №№21-40)

Энергией Гиббса реакции называется изменение энергии Гиббса rG при протекании химической реакции. Так как энергия Гиббса системы С = Н - ТS, её изменение в процессе определяется по формуле:

rG = rН –ТrS. (3.1)

где Т - абсолютная температура в Кельвинах.

Энергия Гиббса химической реакции характеризует возможность её самопроизвольного протекания при постоянном давлении и температуре при р, Т=соnst). Если rG < 0, то реакция может протекать самопроизвольно, при rG > 0 самопроизвольное протекание реакции невозможно, если же rG = 0, система находится в состоянии равновесия.

Для расчёта энергии Гиббса реакции по формуле (3.1) отдельно определяются rН и rS. При этом в большинстве случаев используется слабая зависимость величин изменения энтальпии rН и энтропии rS от условий протекания реакции, т.е. пользуются приближениями:

= rН° 298 и rS = rS° 298 . (3.2)

Стандартную теплоту реакции rН° 298 определяют, используя следствие из закона Гесса по уравнению (2.2), а стандартную энтропию реакции аА + bВ = сС + dD рассчитывают по формуле:

rS° 298 = (сS° 298, С + dS° 298, D) - (aS° 298 , А + bS° 298,B) (3.3)

где rS° 298 - табличные значения абсолютных стандартных энтропии соединений в Дж/(мольК), а rS° 298 - стандартная энтропия реакции в Дж/К.

Пример 3.1. Расчёт энергии Гиббса реакции, выраженной уравнением

4NH 3 (г) + 5О 2 (г) = 4 NO(г) + 6Н 2 О(г) при давлении 202.6 кПа и температуре 500°С (773К).

Согласно условию, реакция протекает при практически реальных значениях давления и температуры, при которых допустимы приближения (3.2), т.е.:

rН 773 = rН ° 298 = -904.8 кДж = - 904800 Дж. (см. пример 2.2). а rS 773 = rS ° 298 . Значение стандартной энтропии реакции, рассчитанной по формуле (3.3), равно: rS° 298 =(4S° 298 , N 0 +6S° 298, H 20)- (4S° 298 , NH 3 + 5S° 298,О2)= (4 * 210,62 + 6 * 188,74) - (4 * 1O92,5 + 5 * 205,03) = 179,77Дж/К

После подстановки значений rН° 298 и rS° 298 в формулу (3.1) получаем:

rG 773 = rН773 - 773 rS 773 = Н ° 298 - 773 rS °298 =

= - 904800 – 773 * 179,77 = 1043762 Дж = - 1043,762 Кдж

Полученное отрицательное значение энергии Гиббса реакцииG 773 указывает на то, что данная реакция в рассматриваемых условиях может протекать самопроизвольно.

Если реакция протекает в стандартных условиях при температуре 298К, расчёт её энергии Гиббса (стандартной энергии Гиббса реакции) можно производить аналогично расчёту стандартной теплоты реакции по формуле, которая для реакции, выраженной уравнением аА + ЬВ = сС + dD, имеет вид:

rG ° 298 = (с rG ° 298,обр,С + drG ° 298.обр, D) – (аrG ° 298.обр A + b rG° 298 ,обр,в ) (3.4)

где rG ° 298.обр - стандартная энергия Гиббса образования соединения в кДж/моль (табличные значения) - энергия Гиббса реакции, в которой при температуре 298К образуется 1 моль данного соединения, находящегося в стандартном состоянии, из простых веществ, также находящихся в стандартном состоянии 4) , а rG ° 298 - стандартная энергия Гиббса реакции в кДж.

Пример 3.2. Расчёт стандартной энергии Гиббса реакции по уравнению:

4NH 3 + 5О 2 = 4 NO + 6Н 2 О

В соответствии с формулой (3. 4) записываем 5) :

rG° 298 = (4 rG° 298, NO + 6 rG° 298,.H2O) –4 rG° 29 8., NH3

После подстановки табличных значений r 298.обр получаем:

rG° 298 = (4(86, 69) + 6(-228, 76)) - 4 (-16, 64) = -184,56 кДж.

По полученному результату видно, что так же, как и в примере 3.1 , в стандартных условиях рассматриваемая реакция может протекать самопроизвольно.

По формуле (3.1) можно определить температурной диапазон самопроизвольного протекания реакции. Так как условием самопроизвольного протекания реакции является отрицательность
rG (rG < 0), определение области температур, в которой реакция может протекать самопроизвольно, сводится к решению относительно температуры неравенства (rН – ТrS) < 0.

Пример 3.3. Определение температурной области самопроизвольного протекания реакции СаО 3 (т) = СаО (т) + СО 2 (г).

Находим rН и rS:

rН = rН° 298 = 177,39 кДж = 177 390 Дж (см. пример 2.1)

rS = rS° 298 = (S° 298 . СаО + S° 298. СО 2 ) - S° 298. СО3 = (39.7+213.6) – 92.9=160.4 Дж/K

Подставляем значения rН и, rS в неравенство и решаем его относительно Т:

177390 Т * 160,4<0, или 177390 < Т * 160,4, или Т > 1106. Т.е. при всех температурах, больших 1 106К, будет обеспечиваться отрицательность rG и, следовательно, в данном температурном диапазоне будет возможным самопроизвольное протекание рассматриваемой реакции.

Химическая кинетика.

(Задачи №№41 - 60)

Как уже отмечалось, химическая кинетика - это раздел химии, изучающий скорости реакций и влияние на них различных факторов.

В гомогенном (однофазном) процессе реакция протекает во всём объёме системы и её скорость характеризуется изменением концентрации любого реагента, или любого продукта в единицу времени. Различают среднюю скоростьV ср = ±rС/rt, где rC - изменение молярной концентрации за период времени rt , и истинную скорость в момент времени t, представляющую собой производную от концентрации по времени: V = ±dС/dt. Скорость каждой конкретной реакции в отсутствие катализатора зависит от концентраций реагентов и от температуры . Скорость гетерогенных реакций, протекающих на межфазной поверхности раздела, зависит также от величины этой поверхности.

_______________________________________________________________________________________

4) Согласно определению, стандартная энергия Гиббса образования простых веществ равна нулю.

5) rG° 298, O 2 в выражении не фигурирует ввиду её равенства нулю.


Влияние концентраций реагентов на скорость реакций устанавливается законом дейст­вующих масс: при фиксированной температуре скорость реакции пропорциональна произве­дению концентраций реагентов в степенях, равных стехиометрическим коэффициентам. Для реакции аА + bВ = сС + dD математическое выражение закона действующих масс, называемое кинетическим уравнением реакции, записывается:

V = kС А а С B b (4.1)

где k - коэффициент пропорциональности, носящий название константы скорости, С A и С B - молярные концентрации реагентов, а и b - их стехиометрические коэффициенты. Сумма показателей степеней в кинетическом уравнении называется порядком реакции.

Пример 4.1. Кинетическое уравнение реакции 2Н 2 (г) + О 2 (г) = 2Н 2 О(г) записывается :

V = kС H 2 2 С О2 . Теоретический порядок данной реакции равен трём.

В кинетических уравнениях реакций концентрации веществ в конденсированном со­стоянии ввиду их неизменности не указываются. Эти постоянные концентрации в качестве составных частей входят в константу скорости.

Пример 4.2. Кинетическое уравнение гетерогенной реакции, протекающей согласно уравнению 2С(т) + О 2 (г) = 2СО(г), имеет вид: V = кС О2 - реакция первого порядка.

Согласно закону действующих масс, скорость реакции изменяется при изменении концентраций реагентов. *

Пример 4.3. Расчёт изменения скорости реакции 2Н2(г) + О 2 (г) = 2Н 2 О(г) при уменьшении концентрации водорода в 2 раза.

Согласно уравнению (4.1). начальная скорость реакции V 1 = kС H 2 2 /С О2 , а скорость реакции при концентрации водорода в 2 раза меньшей определяется соотношением:

V 2 = k(С H 2 /2) 2 С О2 - В итоге имеем V 2 /V 1 = 1/4, т.е. скорость реакции уменьшается в 4 раза.

В реакциях с участием газов изменение концентраций реагентов и, следовательно, изме­нение скорости легче всего осуществить изменением объёма системы путём изменения давления. Согласно уравнению Менделеева - Клапейрона, объём газа уменьшается, а его молярная концен­трация увеличивается во столько раз, во сколько раз увеличивается давление.

Пример 4.4. Расчёт изменения скорости реакции 2Н 2 (г) + О 2 (г) = 2Н 2 О(г) при увеличении давления в 2 раза.

Скорость реакции до увеличения давления V 1 = kС H 2 2 /С О2 - При увеличении давления в 2 раза объём системы уменьшается в 2 раза, в связи с чем концентрация каждого газа увеличивается в 2 раза и становится равной для водорода - 2 С Н2 , для кислорода - 2С О2 - В новых условиях скорость реакции будет выражаться кинетическим уравнением: V 2 = k(2С H 2) 2 2 С О2 - Отношение скоростей V 2 /V 1 = 8, т.е. в результате увеличения давления в 2 раза скорость реакции увеличивается в 8 раз.

Зависимость скорости химических реакций от температуры устанавливается правилом Вант - Гоффа: при увеличении температуры на каждые 10 градусов скорость большинства химических реакций увеличивается в 2 - 4 раза. Соответственно, при таком же уменьшении температуры скорость реакций уменьшается в такое же число раз. Математически правило Вант

Гоффа записывается:

V 2 = V 1 y (Т2 – T 1)/10 или k 2 = k 1 y (Т2 – T 1)/10 (4.2)

где V 2 и V i , k 2 , k 1 - соответственно, скорости и константы скоростей реакции при температурах Т 2 и Т 1 а у= 2 - 4 - температурный коэффициент скорости реакции.

Пример 4.5. Расчётшменения скорости реакции, температурный коэффициент которой равен 3, при уменьшении температуры на 30 градусов.

В соответствии с уравнением (4.2). отношение скоростей V 2 /V 1 = З -30/10 = 1/27. т.е. при уменьшении температуры на 30 градусов скорость реакции уменьшается в 27 раз.

Химическое равновесие.

(Задачи №№61-80)

Химическое равновесие устанавливается в обратимых реакциях - в реакциях, которые могут протекать как в прямом, так и в обратном направлении. Если реакция аА + bВ ó cC +dD) обратима, это означает, что реагенты А и В способны превращаться в продукты С и D (прямая реакция), а продукты С и D в свою очередь могут, реагируя между собой, вновь образовывать исходные вещества А и В (обратная реакция). Термодинамическим условием химического равновесия является неизменность энергии Гиббса реакции, т.е. rG = 0, а кинетическим условием равновесия - равенство скоростей прямой (V 1) и обратной (V 2) реакции: V 1 = V 2

Так как в состоянии химического равновесия и прямая, и обратная реакции протекают с одинаковыми скоростями, концентрации реагентов и продуктов во времени не изменяются. Эти не изменяющиеся во времени концентрации называются равновесными. Равновесные концентрации, в отличие от неравновесных, изменяющихся в ходе реакции, принято обозначать особым образом, а именно, формулой вещества, заключённой в квадратные скобки. Например, записи [Н 2 ], означают, что речь идёт о равновесных концентрациях водорода и аммиака.

При заданной температуре соотношение равновесных концентраций реагентов и продуктов есть величина постоянная и характерная для каждой реакции. Это соотношение количественно характеризуется величиной константы химического равновесия Кс, равной отношению произведения равновесных концентраций продуктов к произведению равновесных концентраций реагентов, возведённых в степени, равные их стехиометрическим коэффициентам. Для обратимой реакции аА+ЬВ ó cС+dD выражение Кс имеет вид:

Кс = ([С1 с [D] d)/([А] а [В] ь) (5.1)

Пример 5.1. Выражение константы химического равновесия обратимой гомогенной реакции N 2 (г)+ЗН 2 (г) ó 2NH 3 (г)

Согласно формуле (5.1) константа химического равновесия рассматриваемой реакции записывается: Кс =[ NНз] 2 / ([Н 2 ] 3).

Так же как в кинетических уравнениях реакций, в выражениях констант равновесия концентрации веществ в конденсированном состоянии, ввиду их постоянства, не записы­ваются.

Пример 5.2. Выражение константы химического равновесия гетерогенной обратимой реакции Fе 3 0 4 (т) + 4СО(г) ó ЗFе(т) + 4СО 2 (г).

Константа химического равновесия данной реакции с учётом вышеотмеченного записывается: Кс = [СО2] 4 /[СО] 4 .

Для реакций с участием газов константа химического равновесия может быть выражена не только через равновесные концентрации, но и через равновесные парциальные давления газов 6) . . В этом случае символ константы равновесия "К" индексируется не символом концентрации "с", а символом давления "р".

Пример 5.3. Константа химического равновесия гетерогенной обратимой реакции Fе 3 0 4 (т) + 4СО(г) ó ЗFе(т) + 4СО 2 (г), выраженная через равновесные парциальные давления газов в равновесной газовой смеси.

В результате замены равновесных концентраций равновесными парциальными давления­ми газов, получаем следующее выражение константы химического равновесия: Кр=Рсо 2 4 /Рсо 4 , где Рсо 2 и Рсо - соответственно, парциальные давления диоксида углерода СО 2 и.монооксида углерода СО.

Поскольку парциальное давление газа и его концентрация связаны между собой соотношением Р i =С i RТ, где Р i и С i - соответственно, парциальное давление и концентрация i-го газа, Кс и Кр, в свою очередь, связаны друг с другом простым соотношением:

Кр=Кс(RТ) r n (5.2)

где rn - разность между суммой стехиометрических коэффициентов продуктов реакции и суммой стехиометрических коэффициентов реагентов.

Пример 5.4. Взаимосвязь Кр и Кс обратимой реакции, выраженной уравнением:

N 2 (г)+ЗН 2 (г) ó 2NH 3 (г)

Записываем выражения Кр и Кс: Кр=Р NH 3 2 / Р N 2 Рн 2 3);

Так как rn = 2 - (1+3) = -2, то в соответствии с (5.2) Кр=Кс(RТ) -2 или иначе Кс=Кр(RТ) 2 .

________________________________________________________________________________

6) Парциальное давление газа в газовой смеси представляет собой часть от общего давления смеси, приходящуюся на долю данного газа.

Численное значение константы равновесия Кр легко определяются термодинамически по формуле:

rGº т = -2,З RТ lgКр (5.3)

где rGº т - стандартная энергия Гиббса реакции при температуре Т рассчитывается по формуле (3.1) или (3.4).

Формула (5.3) используется для расчёта констант равновесия реакций, протекающих с участием газов. При необходимости, используя соотношение (5.2), для такого рода реакций можно рассчитать значение Кс.

Пример 5.5. Расчёт константы равновесия реакции СаСОз(т) ó СаО(т) + СО2(г) при температуре 500°С (773К).

Так как один из участников обратимой реакции (СО 2) - газ, для расчёта константы равновесия используем формулу (5.3). Поскольку температура не является стандартной, rG 0 773 определяем по формуле (3. 1): rG 0 773 = Н° 773 – 773 rS 773 . Необходимые для определения G 0 773 значения Н є 773 и rS 773 возьмём из ранее рассмотренного примера (3.3), а именно: rН 0 773 = rН 0 298 =177390 Дж и S° 773 = rS° 298 =160,4 Дж/К. Соответственно этим значениям rG 0 773 = 177390 –773 773 160.4 =53401 Дж. Далее согласно формуле (5.3) получаем: lgКр = - rG° 773 /(2,ЗRТ) = -53401/(2,3 * 8,314 * 773) = -3,6.

Записываем выражение константы равновесия 7) и её численное значение: Кр=Рсо 2 =10 -3,6 . Столь малое значение Кр свидетельствует о том, что в рассматриваемых условиях прямая реакция практически не протекает (сопоставьте данный вывод с результатом расчёта в примере (3. 3).

Из рассмотренного примера (5.5) вытекает, что численное значение константы химиче­ского равновесия характеризует степень превращения реагентов в продукты: если Кр(Кс)>> 1, в равновесной системе преобладают продукты, те. обратимая реакция преимущественно протекает в прямом направлении и, наоборот, если Кр(Кс)<<1, более выраженной является обратная реакция и степень превращения реагентов в продукты невелика.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-20

Все химические реакции обычно сопровождаются изменением как энтропии, так и энтальпии. Связь между энтальпией и энтропией системы устанавливает термодинамическая функция состояния, которая называется свободной энергией Гиббса или изобарно-изотермическим потенциалом (G). Она характеризует направление и предел самопроизвольного протекания процессов в изобарно-изотермических условиях (р = const и Т = const). С энтальпией и энтропией системы свободная энергия Гиббсасвязана соотношением

G = H – TS. (9)

Абсолютное значение измерить невозможно, поэтому используется изменение функции в процессе протекания того или иного процесса:

DG = DH – TDS. (10)

Свободная энергия Гиббса измеряется в кДж/моль и кДж. Физический смысл свободной энергии Гиббса: свободная энергия системы, которая может быть превращена в работу. Для простых веществ свободная энергия Гиббса принимается равной нулю.

Знак изменения свободной энергии Гиббса DG и ее величина при Р = const определяют термодинамическую устойчивость системы:

· если в химическом процессе происходит снижение свободной энергии Гиббса, т.е. DG < 0, процесс может протекать самопроизвольно, или говорят: процесс термодинамически возможен;

· если продукты реакции имеют больший термодинамический потенциал, чем исходные вещества, т.е. DG >

· если DG = 0, то реакция может протекать как в прямом, так и в обратном направлении, т.е. реакция обратима.

Следовательно, самопроизвольные процессы при Р=const идут с уменьшением свободной энергии Гиббса. Этот вывод справедлив как для изолированных, так и для открытых систем.

Изменение энергии Гиббса системы при образовании 1 моль вещества из простых веществ, устойчивых в данных условиях, называется энергией Гиббса образования вещества DG обр. , измеряется в кДж/моль.

Если вещество находится в стандартных условиях, то энергия Гиббса образования называется стандартной энергией Гиббса образования вещества (DG 0 обр.298). Стандартная энергия Гиббса образования простого вещества, устойчивого в стандартных условиях, равна нулю. Значения DG 0 обр.298 веществ приводятся в справочниках.



Изменение энергии Гиббса, как и изменение энтальпии и энтропии, не зависит от пути процесса, поэтому изменение энергииГиббса химической реакции DG равно разности между суммой энергий Гиббса образования продуктов реакции и суммой энергий Гиббса образования исходных веществ с учетом стехиометрических коэффициентов:

DG 0 298 = S(n i . DG i 0 298) пр. - S(n i . D G i 0 298) исх. . (11)

Свободная энергия Гельмгольца

Направление протекания изохорных процессов (V = const и Т = const) определяется изменением свободной энергии Гельмгольца, которую называют также изохорно-изотермический потенциал (F):

DF = DU – TDS.

Знак изменения свободной энергии Гельмгольца DF и ее величина при V = const определяют термодинамическую устойчивость системы:

· если в химическом процессе происходит снижение свободной энергии Гельмгольца, т.е. D F < 0, процесс может протекать самопроизвольно, или говорят: процесс термодинамически возможен;

· если продукты реакции имеют больший термодинамический потенциал, чем исходные вещества, т.е. D F > 0, процесс протекать самопроизвольно не может, или говорят: процесс термодинамически невозможен;

· если D F = 0, то реакция может протекать как в прямом, так и в обратном направлении, т.е. реакция обратима.

Следовательно, самопроизвольные процессы при V=const идут с уменьшением свободной энергии Гельмгольца. Этот вывод справедлив как для изолированных, так и для открытых систем.


ХИМИЧЕСКАЯ КИНЕТИКА

Основные понятия химической кинетики

Химическая кинетика – раздел химии, изучающий скорости и механизмы химических реакций.

Различают гомогенные и гетерогенные химические реакции:

· гомогенные реакции протекают в однородной среде во всем объеме системы (это реакции в растворах, в газовой фазе);

· гетерогенные реакции протекают в неоднородной среде, на границе раздела фаз (горение твердого или жидкого вещества).

Основным понятием химической кинетики является понятие о скорости химической реакции. Под скоростью химической реакции понимается число элементарных актов взаимодействия в единицу времени в единице объема (если реакция гомогенная) или число элементарных актов взаимодействия в единицу времени на единицу поверхности раздела фаз (если реакция гетерогенная).

Скорость реакции характеризуют изменением концентрации какого-либо из исходных веществ или конечных продуктов реакции в единицу времени и выражают: для гомогенных реакций – моль/л·с (моль/м 3 ·с и т.д.), для гетерогенных – моль/см 2 ·с (моль/м 2 ·с).


Различают среднюю и истинную (мгновенную) скорость реакции. Из зависимостей, представленных на рис. 6.1, следует: при химическом взаимодействии концентрация каждого из исходных веществ (кривая 1) уменьшается во времени (С 2 <С 1 , DС<0), а концентрация каждого из продуктов реакции (кривая 2) возрастает (С` 2 >С` 1 , DС>0). Следовательно, среднюю скорость (V ср) в интервале времени t 1 ÷ t 2 можно выразить следующим образом:

V ср =± (С 2 – С 1)/(t 2 - t 1) = ± DС/Dt. (1)

Средняя скорость является грубым приближением, т.к. в интервале времени t 1 ÷ t 2 она не остается постоянной. Истинная или мгновенная скорость в момент времени t (V) определяется следующим образом:

V = lim (± DС/D t) = ± dС/dt = ± С" t = tg a, (2)

т.е. мгновенная скорость химической реакции равна первой производной от концентрации одного из веществ по времени и определяется как tg угла наклона касательной к кривой С А = f (t) в точке, соответствующей данному моменту времени t: dС/dt = tga.

Скорость химической реакции зависит от различных факторов:

Природы реагирующих веществ;

Их концентрации;

Температуры протекания процесса;

Присутствия катализатора.

Рассмотрим более подробно влияние каждого из перечисленных факторов на скорость химической реакции.