Максимальная потенциальная энергия маятника. Математический маятник: период, ускорение и формулы

Определение

Математический маятник - это колебательная система, являющаяся частным случаем физического маятника, вся масса которого сосредоточена в одной точке, центре масс маятника.

Обычно математический маятник представляют как шарик, подвешенный на длинной невесомой и нерастяжимой нити. Это идеализированная система, совершающая гармонические колебания под действием силы тяжести. Хорошим приближением к математическому маятнику массивный маленький шарик, осуществляющий колебания на тонкой длинной нити.

Галилей первым изучал свойства математического маятника, рассматривая качание паникадила на длинной цепи. Он получил, что период колебаний математического маятника не зависит от амплитуды. Если при запуске мятника отклонять его на разные малые углы, то его колебания будут происходить с одним периодом, но разными амплитудами. Это свойство получило название изохронизма.

Уравнение движения математического маятника

Математический маятник - классический пример гармонического осциллятора. Он совершает гармонические колебания, которые описываются дифференциальным уравнением:

\[\ddot{\varphi }+{\omega }^2_0\varphi =0\ \left(1\right),\]

где $\varphi $ - угол отклонения нити (подвеса) от положения равновесия.

Решением уравнения (1) является функция $\varphi (t):$

\[\varphi (t)={\varphi }_0{\cos \left({\omega }_0t+\alpha \right)\left(2\right),\ }\]

где $\alpha $ - начальная фаза колебаний; ${\varphi }_0$ - амплитуда колебаний; ${\omega }_0$ - циклическая частота.

Колебания гармонического осциллятора - это важный пример периодического движения. Осциллятор служит моделью во многих задачах классической и квантовой механики.

Циклическая частота и период колебаний математического маятника

Циклическая частота математического маятника зависит только от длины его подвеса:

\[\ {\omega }_0=\sqrt{\frac{g}{l}}\left(3\right).\]

Период колебаний математического маятника ($T$) в этом случае равен:

Выражение (4) показывает, что период математического маятника зависит только от длины его подвеса (расстояния от точки подвеса до центра тяжести груза) и ускорения свободного падения.

Уравнение энергии для математического маятника

При рассмотрении колебаний механических систем с одной степенью свободы часто берут в качестве исходного не уравнения движения Ньютона, а уравнение энергии. Так как его проще составлять, и оно является уравнением первого порядка по времени. Предположим, что трение в системе отсутствует. Закон сохранения энергии для совершающего свободные колебания математического маятника (колебания малые) запишем как:

где $E_k$ - кинетическая энергия маятника; $E_p$ - потенциальная энергия маятника; $v$ - скорость движения маятника; $x$ - линейное смещение груза маятника от положения равновесия по дуге окружности радиуса $l$, при этом угол - смещение связан с $x$ как:

\[\varphi =\frac{x}{l}\left(6\right).\]

Максимальное значение потенциальной энергии математического маятника равно:

Максимальная величина кинетической энергии:

где $h_m$ - максимальная высота подъема маятника; $x_m$- максимальное отклонение маятника от положения равновесия; $v_m={\omega }_0x_m$ - максимальная скорость.

Примеры задач с решением

Пример 1

Задание. Какова максимальная высота подъема шарика математического маятника, если его скорость движения при прохождении положения равновесия составляла $v$?

Решение. Сделаем рисунок.

Пусть ноль потенциальной энергии шарика в его положении равновесия (точка 0).В этой точке скорость шарика максимальна и равна по условию задачи $v$. В точке максимального подъема шарика над положением равновесия (точка A), скорость шарика равна нулю, потенциальная энергия максимальна. Запишем закон сохранения энергии для рассмотренных двух положений шарика:

\[\frac{mv^2}{2}=mgh\ \left(1.1\right).\]

Из уравнения (1.1) найдем искомую высоту:

Ответ. $h=\frac{v^2}{2g}$

Пример 2

Задание. Каково ускорение силы тяжести, если математический маятник имеющий длину $l=1\ м$, совершает колебания с периодом равным $T=2\ с$? Считайте колебания математического маятника малыми.\textit{}

Решение. За основу решения задачи примем формулу для вычисления периода малых колебаний:

Выразим из нее ускорение:

Проведем вычисления ускорения силы тяжести:

Ответ. $g=9,87\ \frac{м}{с^2}$

Маятники, изображенные на рис. 2, представляют собой протяженные тела различной формы и размеров, совершающие колебания около точки подвеса или опоры. Такие системы называются физическими маятниками. В состоянии равновесия, когда центр тяжести находится на вертикали под точкой подвеса (или опоры), сила тяжести уравновешивается (через упругие силы деформированного маятника) реакцией опоры. При отклонении из положения равновесия сила тяжести и упругие силы определяют в каждый момент времени угловое ускорение маятника, т. е. определяют характер его движения (колебания). Мы рассмотрим теперь динамику колебаний подробнее на простейшем примере так называемого математического маятника, который представляет собой грузик малого размера, подвешенный на длинной тонкой нити.

В математическом маятнике мы можем пренебречь массой нити и деформацией грузика, т. е. можем считать, что масса маятника сосредоточена в грузике, а упругие силы сосредоточены в нити, которую считают нерастяжимой. Посмотрим теперь, под действием каких сил происходит колебание нашего маятника после того, как он каким-либо способом (толчком, отклонением) выведен из положения равновесия.

Когда маятник покоится в положении равновесия, то сила тяжести, действующая на его грузик и направленная вертикально вниз, уравновешивается силой натяжения нити. В отклоненном положении (рис. 15) сила тяжести действует под углом к силе натяжения , направленной вдоль нити. Разложим силу тяжести на две составляющие: по направлению нити () и перпендикулярно к нему (). При колебаниях маятника сила натяжения нити несколько превышает составляющую - на величину центростремительной силы, которая заставляет груз двигаться по дуге. Составляющая же всегда направлена в сторону положения равновесия; она как бы стремится восстановить это положение. Поэтому ее часто называют возвращающей силой. По модулю тем больше, чем больше отклонен маятник.

Рис. 15. Возвращающая сила при отклонении маятника от положения равновесия

Итак, как только маятник при своих колебаниях начинает отклоняться от положения равновесия, скажем, вправо, появляется сила , замедляющая его движение тем сильнее, чем дальше он отклонен. В конечном счете эта сила его остановит и повлечет обратно к положению равновесия. Однако по мере приближения к этому положению сила будет становиться все меньше и в самом положении равновесия обратится в нуль. Таким образом, через положение равновесия маятник проходит по инерции. Как только он начнет отклоняться влево, опять появится растущая с увеличением отклонения сила , но теперь уже направленная вправо. Движение влево опять будет замедляться, затем маятник на мгновение остановится, после чего начнется ускоренное движение вправо и т. д.

Что происходит с энергией маятника при его колебаниях?

Два раза в течение периода - при наибольших отклонениях влево и вправо- маятник останавливается, т. е. в эти моменты скорость равна нулю, а значит, равна нулю и кинетическая энергия. Зато именно в эти моменты центр тяжести маятника поднят на наибольшую высоту и, следовательно, потенциальная энергия наибольшая. Наоборот, в моменты прохождения через положение равновесия потенциальная энергия наименьшая, а скорость и кинетическая энергия достигают наибольшего значения.

Мы предположим, что силами трения маятника о воздух и трением в точке подвеса можно пренебречь. Тогда по закону сохранения энергии эта наибольшая кинетическая энергия как раз равна избытку потенциальной энергии в положении наибольшего отклонения над потенциальной энергией в положении равновесия.

Итак, при колебаниях маятника происходит периодический переход кинетической энергии в потенциальную и обратно, причем период этого процесса вдвое короче периода колебаний самого маятника. Однако полная энергия маятника (сумма потенциальной и кинетической энергий) все время постоянна. Она равна той энергии, которая была сообщена маятнику при пуске, безразлично - в виде ли потенциальной энергии (начальное отклонение) или в виде кинетической (начальный толчок).

Так обстоит дело при всяких колебаниях в отсутствие трения или каких-либо иных процессов, отнимающих энергию у колеблющейся системы или сообщающих ей энергию. Именно поэтому амплитуда сохраняется неизменной и определяется начальным отклонением или силой толчка.

Те же самые изменения возвращающей силы и такой же переход энергии мы получим, если вместо подвешивания шарика на нити заставим его кататься в вертикальной плоскости в сферической чашке или в изогнутом по окружности желобе. В этом случае роль натяжения нити возьмет на себя давление стенок чашки или желоба (трением шарика о стенки и воздух мы опять-таки пренебрегаем).

Математический маят­ник - это материальная точка, подвешенная на невесомой и нерас­тяжимой нити, находящейся в поле тяжести Земли. Математический маятник - это идеализированная модель, правильно описывающая реальный маятник лишь при определенных условиях. Реальный ма­ятник можно считать математическим, если длина нити много больше размеров подвешенного на ней тела, масса нити ничтожна мала по сравнению с массой тела, а деформации нити настолько малы, что ими вообще можно пренебречь.

Колебательную систему в данном случае образуют нить, присо­единенное к ней тело и Земля, без которой эта система не могла бы служить маятником.

где а х ускорение, g – ускорение свободного падения, х - смещение, l – длина нити маятника.

Это уравнение называется урав­нением свободных колебаний математического маятника. Оно правильно описывает рассматриваемые колебания лишь тогда, когда выполнены следующие предположения:

2) рассматриваются лишь малые колебания маятника с небольшим углом размаха.

Свободные колебания любых систем во всех слу­чаях описываются аналогичными уравнениями.

Причинами свободных колебаний математическо­го маятника являются:

1. Действие на маятник силы натяжения и силы тяжести, пре­пятствующей его смещению из положения равновесия и заставляю­щей его снова опускаться.

2. Инертность маятника, благодаря которой он, сохраняя свою скорость, не останавливается в положении равновесия, а проходит через него дальше.

Период свободных колебаний математического ма­ятника

Период свободных колебаний математического маятника не за­висит от его массы, а определяется лишь длиной нити и ускорением свободного падения в том месте, где находится маятник.

Превращение энергии при гармонических колебаниях

При гармонических колебаниях пружинного маятника проис­ходят превращения потенциальной энергии упруго деформированного тела в его кинетическую энергию , гдеk коэффициент упругости,х - модуль смещения маятника из поло­жения равновесия,m - масса маятника,v - его скорость. В соот­ветствии с уравнением гармонических колебаний:

, .

Полная энергия пружинного маятника:

.

Полная энергия для математического маятника:

В случае математического маятника

Превращения энергии при колебаниях пружинного маятника происходи в соответствии с законом сохранения механической энергии (). При движении маятника вниз или вверх от положения равновесия его потенциальная энергия увеличивается, а кинетическая - уменьшается. Когда маятник проходит положение равно­весия (х = 0), его потенциальная энергия равна нулю и кинетическая энергия маятника имеет наибольшее значение, равное его полной энергии.

Таким образом, в процессе свободных колебаний маятника его потенциальная энергия превращается в кинетическую, кинетическая в потенциальную, потенциальная затем снова в кинетическую и т. д. Но полная механическая энергия при этом остается неизменной.

Вынужденные колебания. Резонанс.

Колебания, происходящие под действием внеш­ней периодической силы, называются вынужден­ными колебаниями . Внешняя периодическая си­ла, называемая вынуждающей, сообщает колеба­тельной системе дополнительную энергию, которая идет на восполнение энергетических потерь, проис­ходящих из-за трения. Если вынуждающая сила изменяется во времени по закону синуса или коси­нуса, то вынужденные колебания будут гармониче­скими и незатухающими.

В отличие от свободных колебаний, когда система получает энергию лишь один раз (при выведении системы из со­стояния равновесия), в случае вынужден­ных колебаний система поглощает эту энергию от источника внешней периоди­ческой силы непрерывно. Эта энергия восполняет потери, расходуемые на пре­одоление трения, и потому полная энергия колебательной системы no-прежнему ос­тается неизменной.

Частота вынужденных колебаний равна часто­те вынуждающей силы . В случае, когда частота вынуждающей силы υ совпадает с собственной ча­стотой колебательной системы υ 0 , происходит рез­кое возрастание амплитуды вынужденных колеба­ний - резонанс . Резонанс возникает из-за того, что при υ = υ 0 внешняя сила, действуя в такт со свободными колебаниями, все время сонаправлена со скоростью колеблющегося тела и совершает по­ложительную работу: энергия колеблющегося те­ла увеличивается, и амплитуда его колебаний ста­новится большой. График зависимости амплитуды вынужденных колебаний А т от частоты вынужда­ющей силы υ представлен на рисунке, этот график называется резонансной кривой:

Явление резонанса играет большую роль в ря­де природных, научных и производственных про­цессов. Например, необходимо учитывать явление резонанса при проектировании мостов, зданий и других сооружений, испытывающих вибрацию под нагрузкой, в противном случае при определенных условиях эти сооружения могут быть разрушены.

Механическая система, которая состоит из материальной точки (тела), висящей на нерастяжимой невесомой нити (ее масса ничтожно мала по сравнению с весом тела) в однородном поле тяжести, называется математическим маятником (другое название - осциллятор). Бывают и другие виды этого устройства. Вместо нити может быть использован невесомый стержень. Математический маятник может наглядно раскрыть суть многих интересных явлений. При малой амплитуде колебания его движение называется гармоническим.

Общие сведения о механической системе

Формула периода колебания этого маятника была выведена голландским ученым Гюйгенсом (1629-1695 гг.). Этот современник И. Ньютона очень увлекался данной механической системой. В 1656 г. он создал первые часы с маятниковым механизмом. Они измеряли время с исключительной для тех времен точностью. Это изобретение стало важнейшим этапом в развитии физических экспериментов и практической деятельности.

Если маятник находится в положении равновесия (висит отвесно), то будет уравновешиваться силой натяжения нити. Плоский маятник на нерастяжимой нити является системой с двумя степенями свободы со связью. При смене всего одного компонента меняются характеристики всех ее частей. Так, если нитку заменить на стержень, то у данной механической системы будет всего 1 степень свободы. Какими же свойствами обладает математический маятник? В этой простейшей системе под воздействием периодического возмущения возникает хаос. В том случае, когда точка подвеса не двигается, а совершает колебания, у маятника появляется новое положение равновесия. При быстрых колебаниях вверх-вниз эта механическая система приобретает устойчивое положение «вверх тормашками». У нее есть и свое название. Ее называют маятником Капицы.

Свойства маятника

Математический маятник имеет очень интересные свойства. Все они подтверждаются известными физическими законами. Период колебаний любого другого маятника зависит от разных обстоятельств, таких как размер и форма тела, расстояние между точкой подвеса и центром тяжести, распределение массы относительно данной точки. Именно поэтому определение периода висящего тела является довольно сложной задачей. Намного легче вычисляется период математического маятника, формула которого будет приведена ниже. В результате наблюдений над подобными механическими системами можно установить такие закономерности:

Если, сохраняя одинаковую длину маятника, подвешивать различные грузы, то период их колебаний получится одинаковым, хотя их массы будут сильно различаться. Следовательно, период такого маятника не зависит от массы груза.

Если при запуске системы отклонять маятник на не слишком большие, но разные углы, то он станет колебаться с одинаковым периодом, но по разным амплитудам. Пока отклонения от центра равновесия не слишком велики, колебания по своей форме будут достаточно близки гармоническим. Период такого маятника никак не зависит от колебательной амплитуды. Это свойство данной механической системы называется изохронизмом (в переводе с греческого «хронос» - время, «изос» - равный).

Период математического маятника

Этот показатель представляет собой период собственных колебаний. Несмотря на сложную формулировку, сам процесс очень прост. Если длина нити математического маятника L, а ускорение свободного падения g, то эта величина равна:

Период малых ни в какой мере не зависит от массы маятника и амплитуды колебаний. В этом случае маятник двигается как математический с приведенной длиной.

Колебания математического маятника

Математический маятник совершает колебания, которые можно описать простым дифференциальным уравнением:

x + ω2 sin x = 0,

где х (t) - неизвестная функция (это угол отклонения от нижнего положения равновесия в момент t, выраженный в радианах); ω - положительная константа, которая определяется из параметров маятника (ω = √g/L, где g - это ускорение свободного падения, а L - длина математического маятника (подвес).

Уравнение малых колебаний вблизи положення равновесия (гармоническое уравнение) выглядит так:

x + ω2 sin x = 0

Колебательные движения маятника

Математический маятник, который совершает малые колебания, двигается по синусоиде. Дифференциальное уравнение второго порядка отвечает всем требованиям и параметрам такого движения. Для определения траектории необходимо задать скорость и координату, из которых потом определяются независимые константы:

x = A sin (θ 0 + ωt),

где θ 0 - начальная фаза, A - амплитуда колебания, ω - циклическая частота, определяемая из уравнения движения.

Математический маятник (формулы для больших амплитуд)

Данная механическая система, совершающая свои колебания со значительной амплитудой, подчиняется более сложным законам движения. Для такого маятника они рассчитываются по формуле:

sin x/2 = u * sn(ωt/u),

где sn - синус Якоби, который для u < 1 является периодической функцией, а при малых u он совпадает с простым тригонометрическим синусом. Значение u определяют следующим выражением:

u = (ε + ω2)/2ω2,

где ε = E/mL2 (mL2 - энергия маятника).

Определение периода колебания нелинейного маятника осуществляется по формуле:

где Ω = π/2 * ω/2K(u), K - эллиптический интеграл, π - 3,14.

Движение маятника по сепаратрисе

Сепаратрисой называют траекторию динамической системы, у которой двумерное фазовое пространство. Математический маятник движется по ней непериодически. В бесконечно дальнем моменте времени он падает из крайнего верхнего положения в сторону с нулевой скоростью, затем постепенно набирает ее. В конечном итоге он останавливается, вернувшись в исходное положение.

Если амплитуда колебаний маятника приближается к числу π , это говорит о том, что движение на фазовой плоскости приближается к сепаратрисе. В этом случае под действием малой вынуждающей периодической силы механическая система проявляет хаотическое поведение.

При отклонении математического маятника от положения равновесия с некоторым углом φ возникает касательная силы тяжести Fτ = -mg sin φ. Знак «минус» означает, что эта касательная составляющая направляется в противоположную от отклонения маятника сторону. При обозначении через x смещения маятника по дуге окружности с радиусом L его угловое смещение равняется φ = x/L. Второй закон предназначенный для проекций и силы, даст искомое значение:

mg τ = Fτ = -mg sin x/L

Исходя из этого соотношения, видно, что этот маятник представляет собой нелинейную систему, поскольку сила, которая стремится вернуть его в положение равновесия, всегда пропорциональна не смещению x, а sin x/L.

Только тогда, когда математический маятник осуществляет малые колебания, он является гармоническим осциллятором. Иными словами, он становится механической системой, способной выполнять гармонические колебания. Такое приближение практически справедливо для углов в 15-20°. Колебания маятника с большими амплитудами не является гармоническим.

Закон Ньютона для малых колебаний маятника

Если данная механическая система выполняет малые колебания, 2-й закон Ньютона будет выглядеть таким образом:

mg τ = Fτ = -m* g/L* x.

Исходя из этого, можно заключить, что математического маятника пропорционально его смещению со знаком «минус». Это и является условием, благодаря которому система становится гармоническим осциллятором. Модуль коэффициента пропорциональности между смещением и ускорением равняется квадрату круговой частоты:

ω02 = g/L; ω0 = √ g/L.

Эта формула отражает собственную частоту малых колебаний этого вида маятника. Исходя из этого,

T = 2π/ ω0 = 2π√ g/L.

Вычисления на основе закона сохранения энергии

Свойства маятника можно описать и при помощи закона сохранения энергии. При этом следует учитывать, что маятника в поле тяжести равняется:

E = mg∆h = mgL(1 - cos α) = mgL2sin2 α/2

Полная равняется кинетической или максимальной потенциальной: Epmax = Ekmsx = E

После того как будет записан закон сохранения энергии, берут производную от правой и левой частей уравнения:

Поскольку производная от постоянных величин равняется 0, то (Ep + Ek)" = 0. Производная суммы равняется сумме производных:

Ep" = (mg/L*x2/2)" = mg/2L*2x*x" = mg/L*v + Ek" = (mv2/2) = m/2(v2)" = m/2*2v*v" = mv* α,

следовательно:

Mg/L*xv + mva = v (mg/L*x + m α) = 0.

Исходя из последней формулы находим: α = - g/L*x.

Практическое применение математического маятника

Ускорение изменяется с географической широтой, поскольку плотность земной коры по всей планете не одинакова. Там, где залегают породы с большей плотностью, оно будет несколько выше. Ускорение математического маятника нередко применяют для геологоразведки. В его помощью ищут различные полезные ископаемые. Просто подсчитав количество колебаний маятника, можно обнаружить в недрах Земли каменный уголь или руду. Это связано с тем, что такие ископаемые имеют плотность и массу больше, чем лежащие под ними рыхлые горные породы.

Математическим маятником пользовались такие выдающиеся ученые, как Сократ, Аристотель, Платон, Плутарх, Архимед. Многие из них верили в то, что эта механическая система может влиять на судьбу и жизнь человека. Архимед использовал математический маятник при своих вычислениях. В наше время многие оккультисты и экстрасенсы пользуются этой механической системой для осуществления своих пророчеств или поиска пропавших людей.

Известный французский астроном и естествоиспытатель К. Фламмарион для своих исследований также использовал математический маятник. Он утверждал, что с его помощью ему удалось предсказать открытие новой планеты, появление Тунгусского метеорита и другие важные события. Во время Второй мировой войны в Германии (г. Берлин) работал специализированный Институт маятника. В наши дни подобными исследованиями занят Мюнхенский институт парапсихологии. Свою работу с маятником сотрудники этого заведения называют «радиэстезией».

10.4. Закон сохранения энергии при гармонических колебаниях

10.4.1. Сохранение энергии при механических гармонических колебаниях

Сохранение энергии при колебаниях математического маятника

При гармонических колебаниях полная механическая энергия системы сохраняется (остается постоянной).

Полная механическая энергия математического маятника

E = W k + W p ,

где W k - кинетическая энергия, W k = = mv 2 /2; W p - потенциальная энергия, W p = mgh ; m - масса груза; g - модуль ускорения свободного падения; v - модуль скорости груза; h - высота подъема груза над положением равновесия (рис. 10.15).

При гармонических колебаниях математический маятник проходит ряд последовательных состояний, поэтому целесообразно рассмотреть энергию математического маятника в трех положениях (см. рис. 10.15):

Рис. 10.15

1) в положении равновесия

потенциальная энергия равна нулю; полная энергия совпадает с максимальной кинетической энергией:

E = W k max ;

2) в крайнем положении (2 ) тело поднято над исходным уровнем на максимальную высоту h max , поэтому потенциальная энергия также максимальна:

W p max = m g h max ;

кинетическая энергия равна нулю; полная энергия совпадает с максимальной потенциальной энергией:

E = W p max ;

3) в промежуточном положении (3 ) тело обладает мгновенной скоростью v и поднято над исходным уровнем на некоторую высоту h , поэтому полная энергия представляет собой сумму

E = m v 2 2 + m g h ,

где mv 2 /2 - кинетическая энергия; mgh - потенциальная энергия; m - масса груза; g - модуль ускорения свободного падения; v - модуль скорости груза; h - высота подъема груза над положением равновесия.

При гармонических колебаниях математического маятника полная механическая энергия сохраняется:

E = const.

Значения полной энергии математического маятника в трех его положениях отражены в табл. 10.1.

Положение W p W k E = W p + W k
1 Равновесие 0 m v max 2 / 2 m v max 2 / 2
2 Крайнее mgh max 0 mgh max
3 Промежуточное (мгновенное) mgh mv 2 /2 mv 2 /2 + mgh

Значения полной механической энергии, представленные в последнем столбце табл. 10.1, имеют равные значения для любых положений маятника, что является математическим выражением :

m v max 2 2 = m g h max ;

m v max 2 2 = m v 2 2 + m g h ;

m g h max = m v 2 2 + m g h ,

где m - масса груза; g - модуль ускорения свободного падения; v - модуль мгновенной скорости груза в положении 3 ; h - высота подъема груза над положением равновесия в положении 3 ; v max - модуль максимальной скорости груза в положении 1 ; h max - максимальная высота подъема груза над положением равновесия в положении 2 .

Угол отклонения нити математического маятника от вертикали (рис. 10.15) определяется выражением

cos α = l − h l = 1 − h l ,

где l - длина нити; h - высота подъема груза над положением равновесия.

Максимальный угол отклонения α max определяется максимальной высотой подъема груза над положением равновесия h max:

cos α max = 1 − h max l .

Пример 11. Период малых колебаний математического маятника равен 0,9 с. На какой максимальный угол от вертикали будет отклоняться нить, если, проходя положение равновесия, шарик движется со скоростью, равной 1,5 м/с? Трение в системе отсутствует.

Решение . На рисунке показаны два положения математического маятника:

  • положение равновесия 1 (характеризуется максимальной скоростью шарика v max);
  • крайнее положение 2 (характеризуется максимальной высотой подъема шарика h max над положением равновесия).

Искомый угол определяется равенством

cos α max = l − h max l = 1 − h max l ,

где l - длина нити маятника.

Максимальную высоту подъема шарика маятника над положением равновесия найдем из закона сохранения полной механической энергии.

Полная энергия маятника в положении равновесия и в крайнем положении определяется следующими формулами:

  • в положении равновесия -

E 1 = m v max 2 2 ,

где m - масса шарика маятника; v max - модуль скорости шарика в положении равновесия (максимальная скорость), v max = 1,5 м/с;

  • в крайнем положении -

E 2 = mgh max ,

где g - модуль ускорения свободного падения; h max - максимальная высота подъема шарика над положением равновесия.

Закон сохранения полной механической энергии:

m v max 2 2 = m g h max .

Выразим отсюда максимальную высоту подъема шарика над положением равновесия:

h max = v max 2 2 g .

Длину нити определим из формулы для периода колебаний математического маятника

T = 2 π l g ,

т.е. длина нити

l = T 2 g 4 π 2 .

Подставим h max и l в выражение для косинуса искомого угла:

cos α max = 1 − 2 π 2 v max 2 g 2 T 2

и произведем вычисление с учетом приблизительного равенства π 2 = 10:

cos α max = 1 − 2 ⋅ 10 ⋅ (1,5) 2 10 2 ⋅ (0,9) 2 = 0,5 .

Отсюда следует, что максимальный угол отклонения составляет 60°.

Строго говоря, при угле 60° колебания шарика не являются малыми и пользоваться стандартной формулой для периода колебаний математического маятника неправомерно.

Сохранение энергии при колебаниях пружинного маятника

Полная механическая энергия пружинного маятника складывается из кинетической энергии и потенциальной энергии:

E = W k + W p ,

где W k - кинетическая энергия, W k = mv 2 /2; W p - потенциальная энергия, W p = k (Δx ) 2 /2; m - масса груза; v - модуль скорости груза; k - коэффициент жесткости (упругости) пружины; Δx - деформация (растяжение или сжатие) пружины (рис. 10.16).

В Международной системе единиц энергия механической колебательной системы измеряется в джоулях (1 Дж).

При гармонических колебаниях пружинный маятник проходит ряд последовательных состояний, поэтому целесообразно рассмотреть энергию пружинного маятника в трех положениях (см. рис. 10.16):

1) в положении равновесия (1 ) скорость тела имеет максимальное значение v max , поэтому кинетическая энергия также максимальна:

W k max = m v max 2 2 ;

потенциальная энергия пружины равна нулю, так как пружина не деформирована; полная энергия совпадает с максимальной кинетической энергией:

E = W k max ;

2) в крайнем положении (2 ) пружина имеет максимальную деформацию (Δx max), поэтому потенциальная энергия также имеет максимальное значение:

W p max = k (Δ x max) 2 2 ;

кинетическая энергия тела равна нулю; полная энергия совпадает с максимальной потенциальной энергией:

E = W p max ;

3) в промежуточном положении (3 ) тело обладает мгновенной скоростью v , пружина имеет в этот момент некоторую деформацию (Δx ), поэтому полная энергия представляет собой сумму

E = m v 2 2 + k (Δ x) 2 2 ,

где mv 2 /2 - кинетическая энергия; k (Δx ) 2 /2 - потенциальная энергия; m - масса груза; v - модуль скорости груза; k - коэффициент жесткости (упругости) пружины; Δx - деформация (растяжение или сжатие) пружины.

При смещении груза пружинного маятника от положения равновесия на него действует возвращающая сила , проекция которой на направление движения маятника определяется формулой

F x = −kx ,

где x - смещение груза пружинного маятника от положения равновесия, x = ∆x , ∆x - деформация пружины; k - коэффициент жесткости (упругости) пружины маятника.

При гармонических колебаниях пружинного маятника полная механическая энергия сохраняется:

E = const.

Значения полной энергии пружинного маятника в трех его положениях отражены в табл. 10.2.

Положение W p W k E = W p + W k
1 Равновесие 0 m v max 2 / 2 m v max 2 / 2
2 Крайнее k (Δx max) 2 /2 0 k (Δx max) 2 /2
3 Промежуточное (мгновенное) k (Δx ) 2 /2 mv 2 /2 mv 2 /2 + k (Δx ) 2 /2

Значения полной механической энергии, представленные в последнем столбце таблицы, имеют равные значения для любых положений маятника, что является математическим выражением закона сохранения полной механической энергии :

m v max 2 2 = k (Δ x max) 2 2 ;

m v max 2 2 = m v 2 2 + k (Δ x) 2 2 ;

k (Δ x max) 2 2 = m v 2 2 + k (Δ x) 2 2 ,

где m - масса груза; v - модуль мгновенной скорости груза в положении 3 ; Δx - деформация (растяжение или сжатие) пружины в положении 3 ; v max - модуль максимальной скорости груза в положении 1 ; Δx max - максимальная деформация (растяжение или сжатие) пружины в положении 2 .

Пример 12. Пружинный маятник совершает гармонические колебания. Во сколько раз его кинетическая энергия больше потенциальной в тот момент, когда смещение тела из положения равновесия составляет четверть амплитуды?

Решение . Сравним два положения пружинного маятника:

  • крайнее положение 1 (характеризуется максимальным смещением груза маятника от положения равновесия x max);
  • промежуточное положение 2 (характеризуется промежуточными значениями смещения от положения равновесия x и скорости v →).

Полная энергия маятника в крайнем и промежуточном положениях определяется следующими формулами:

  • в крайнем положении -

E 1 = k (Δ x max) 2 2 ,

где k - коэффициент жесткости (упругости) пружины; ∆x max - амплитуда колебаний (максимальное смещение от положения равновесия), ∆x max = A ;

  • в промежуточном положении -

E 2 = k (Δ x) 2 2 + m v 2 2 ,

где m - масса груза маятника; ∆x - смещение груза от положения равновесия, ∆x = A /4.

Закон сохранения полной механической энергии для пружинного маятника имеет следующий вид:

k (Δ x max) 2 2 = k (Δ x) 2 2 + m v 2 2 .

Разделим обе части записанного равенства на k (∆x ) 2 /2:

(Δ x max Δ x) 2 = 1 + m v 2 2 ⋅ 2 k Δ x 2 = 1 + W k W p ,

где W k - кинетическая энергия маятника в промежуточном положении, W k = mv 2 /2; W p - потенциальная энергия маятника в промежуточном положении, W p = k (∆x ) 2 /2.

Выразим из уравнения искомое отношение энергий:

W k W p = (Δ x max Δ x) 2 − 1

и рассчитаем его значение:

W k W p = (A A / 4) 2 − 1 = 16 − 1 = 15 .

В указанный момент времени отношение кинетической и потенциальной энергий маятника равно 15.