Для чего нужна кинетическая энергия. Что такое потенциальная энергия

В предыдущем параграфе было выяснено, что когда тела, взаимодействующие друг с другом силой упругости или силой тяжести, совершают работу, то изменяется взаимное расположение тел или их частей. А когда работу совершает движущееся тело, то изменяется его скорость. Но при совершении работы изменяется энергия тел. Отсюда можно заключить, что энергия тел, взаимодействующих силой упругости или силой тяжести, зависит от взаимного расположения этих тел или их частей. Энергия же движущегося тела зависит от его скорости.

Энергию тел, которой они обладают вследствие взаимодействия друг с другом, называют потенциальной энергией. Энергию же тел, которой они обладают вследствие своего движения, называют кинетической энергией.

Следовательно, энергия, которой обладает Земля и находящееся вблизи нее тело, - это потенциальная энергия системы Земля - тело. Для краткости принято говорить, что этой энергией обладает само тело, находящееся вблизи поверхности Земли.

Энергия деформированной пружины - это тоже потенциальная энергия. Она определяется взаимным расположением витков пружины.

Кинетическая энергия - это энергия движения. Кинетической энергией может обладать тело и не взаимодействующее с другими телами.

Тела могут обладать одновременно и потенциальной, и кинетической энергией. Например, искусственный спутник Земли обладает кинетической энергией, потому что он движется, и потенциальной энергией, потому что он взаимодействует силой всемирного тяготения с Землей. Падающий груз тоже обладает и кинетической, и потенциальной энергией.

Посмотрим теперь, как можно вычислить энергию, которой обладает тело в данном состоянии, а не только ее изменение. Для этой цели нужно из различных состояний тела или системы тел выбрать одно определенное состояние, с которым будут сравниваться все остальные.

Назовем это состояние «нулевым состоянием». Тогда энергия тел в любом состоянии будет равна работе, которая совершается

при переходе из этого состояния в пулевое состояние. (Очевидно, что в нулевом состоянии энергия тела равна пулю.) Напомним, что работа, совершаемая силон тяжести и силой упругости, не зависит от траектории движения тела. Она зависит только от его начального и конечного положений. Точно так же работа, совершаемая при изменении скорости тела, зависит только от начальной и конечной скорости тела.

Какое состояние тел выбрать за нулевое, безразлично. Но в некоторых случаях выбор нулевого состояния напрашивается сам собой. Например, когда речь идет о потенциальной энергии упруго деформированной пружины, естественно считать, что недеформированная пружина находится в нулевом состоянии. Энергия недеформированной пружины равна нулю. Тогда потенциальная энергия деформированной пружины будет равна той работе, которую совершила бы эта пружина, перейдя в недеформпрованноесостояние. Когда нас интересует кинетическая энергия движущегося тела, естественно принять за нулевое то состояние тела, в котором его скорость равна нулю. Кинетическую энергию движущегося тела мы получим, если вычислим работу, которую оно совершило бы, двигаясь до полной остановки.

Иное дело, когда речь идет о потенциальной энергии тела, поднятого на некоторую высоту над Землей. Эта энергия зависит, конечно, от высоты поднятия тела. Но тут нет «естественного» выбора нулевого состояния, т. е. того положения тела, от которого нужно отсчитывать его высоту. Можно выбрать за нулевое то состояние тела, когда оно находится на полу комнаты, на уровне моря, на дне шахты и т. д. Необходимо лишь при определении энергии тела на разных высотах отсчитывать эти высоты от одного и того же уровня, высота которого принята равной нулю. Тогда значение потенциальной энергии тела на данной высоте будет равно работе, которая была бы совершена при переходе тела с этой высоты на нулевой уровень.

Выходит, что в зависимости от выбора нулевого состояния энергия одного и того же тела имеет разные значения! В этом нет никакой беды. Ведь для вычисления работы, совершаемой телом, нам нужно знать изменение энергии, т. е. разность двух значений энергии. А эта разность никак не зависит от выбора нулевого уровня. Например, для того чтобы определить, на сколько вершина одной горы выше другой, безразлично, откуда отсчитывается высота каждой вершины. Важно лишь, чтобы она отсчитывалась от одного и того же уровня (например, от уровня моря).

Изменение как кинетической, так и потенциальной энергии тел всегда равно по абсолютной величине работе, совершенной действующими на эти тела силами. Но между обоими видами энергии имеется важное различие. Изменение кинетической энергии тела при действии на него силы действительно равно совершенной этой силой работе, т. е. совпадает с ней как по абсолютной величине, так и по знаку. Это непосредственно следует из теоремы о

кинетической энергии (см. § 76). Изменение же потепцналыюй энергии тел равно работе, совершенной силами взаимодействия, только по абсолютной величине, а по знаку противоположно ей. В самом деле, когда тело, на которое действует сила тяжести, перемещается вниз, совершается положительная работа, а потенциальная энергия тела при этом уменьшается. То же относится к деформированной пружине: при сокращении растянутой пружины сила упругости совершает положительную работу, а потенциальная энергия пружины уменьшается. Напомним, что изменение величины - это разность между последующим и предшествующим значением этой величины. Поэтому, когда изменение какой-нибудь величины состоит в том, что она увеличивается, это изменение имеет положительный знак. Наоборот, если величина уменьшается, ее изменение отрицательно.

Упражнение 54

1. В каких случаях тело обладает потенциальной энергией?

2. В каких случаях тело обладает кинетической энергией?

3. Какой энергией обладает свободно падающее тело?

4. Как изменяется потенциальная энергия тела, на которое действует сила тяжести, при его движении вниз?

5. Как изменится потенциальная энергия тела, на которое действует сила упругости или сила тяжести, если, пройдя по любой траектории, тело вернется в исходную точку?

6. Как связана работа, совершаемая пружиной, с изменением ее потенциальной энергии?

7. Как изменяется потенциальная энергия пружины, когда недеформированную пружину растягивают? Сжимают?

8. Шарик подвешен к пружине и совершает колебания. Как изменяется потенциальная энергия пружины при ее движении вверх и вниз?

Кинетическая энергия - это энергия движения тела. Соотвественно, если у нас есть какой-то объект, обладающий хоть какой-то массой и хоть какой-то скоростью, то он и обладает кинетической энергией. Однако относительно разных систем отсчета эта кинетическая энергия у одного и того же объекта может быть разной.

Пример. Есть бабушка, которая относительно земли нашей планеты находится в состоянии покоя, то есть не движется и, скажем, сидит на остановке в ожидании своего автобуса. Тогда относительно нашей планеты ее кинетическая энергия равна нулю. Но если посмотреть на эту же бабушку с Луны или с Солнца, относительно которых можно наблюдать движение планеты и, соответственно, этой бабушки, которая находится на нашей планете, то бабушка уже будет обладать кинетической энергией относительно упомянутых небесных тел. И тут приезжает автобус. Эта самая бабушка быстро встает и бежит занимать положенное ей место. Теперь относительно планеты она уже не в покое, а вполне себе движется. А значит и обладает кинетической энергией. И чем толще бабушка и быстрее, тем больше ее кинетическая энергия.

Есть несколько фундаментальных видов энергии - основных. Расскажу, например, про механические. К ним относятся энергия кинетическая, которая зависит от скорости и массы объекта, энергия потенциальная, которая зависит от того, где вы возьмете нулевой уровень потенциальной энергии, и от того положения, где находится этот объект относительно нулевого уровня потенциальной энергии. То есть потенциальная энергия - энергия, зависящая от положения объекта. Эта энергия характеризует работу, совершаемую полем, в котором находится объект, по его перемещению.

Пример. Несете вы в руках огромную коробку и падаете. Коробка лежит на полу. Выходит, что нулевой уровень потенциальной энергии у вас будет находится, соответственно, на уровне пола. Тогда верхняя часть коробки будет обладать большей потенциальной энергией, так как она находится выше пола и выше нулевого уровня потенциальной энергии.

Глупо говорить про энергию, не упомянув закон о ее сохранении. Таким образом, по закону сохранения энергии, эти два ее вида, описывающих состояние объекта, ни откуда не берутся и никуда не исчезают, а только переходят друг в друга.

А вот и пример. Падаю я с высоты дома, изначально имея потенциальную энергию относительно земли в момент перед прыжком, а моя кинетическая энергия пренебрежимо мала, поэтому можем приравнять её к нулю. Вот я отрываю ножки от карниза и моя потенциальная энергия начинает уменьшаться, так как высота, на которой я нахожусь, становится все меньше и меньше. В этот же момент при падении вниз я постепенно приобретаю кинетическую энергию, так как падаю вниз все с большей скоростью. В момент падения я уже обладаю максимальной кинетической энергией, но потенциальная равно нулю, такие дела.

КИНЕТИЧЕСКАЯ ЭНЕРГИЯ

КИНЕТИЧЕСКАЯ ЭНЕРГИЯ , энергия, которой обладает движущийся предмет. Получает ее, начав двигаться. Зависит от массы () предмета и его скорости (v ), согласно равенству: К. э. = 1/2mv 2 . При ударе преобразуется в другую форму энергии, такую как тепловая, звуковая или световая. см. также ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ .

Кинетическая энергия. Движущийся грузовик обладает кинетической энергией (А). Для того, чтобы увеличить его скорость, ему нужно сообщить дополнительную энергию, достаточную для преодоления трения и сопротивления воздуха, и увеличения скорости. Для того, чтобы понизить кинетическую энергию грузовика, необходимую для того чтобы кинетическая энергия была преобразована в тепловую энергию тормозов и шин (В), Кинетическая энергия нагруженного грузовика, двигающегося с такой же скоростью, будет больше из-за большей массы (С) и ему понадобится больше тормозной силы, чтобы растратить кине тическую энергию и остановиться на том же расстоянии, что и ненагруженный грузовик.


Научно-технический энциклопедический словарь .

>>Физика 10 класс >>Физика: Кинетическая энергия и ее изменение

Кинетическая энергия

Кинетическая энергия - это энергия тела, которую оно имеет вследствие своего движения.

Если говорить простым языком, то под понятием кинетической энергии следует подразумевать только ту энергию, которую имеет тело при движении. Если же тело пребывает в состоянии покоя, то есть, совершенно не движется, тогда кинетическая энергия будет равняться нулю.

Кинетическая энергия равняется той работе, которую она должна затратить, чтобы вывести тело из состояния покоя в состояние движения с какой-то скоростью.

Следовательно, кинетическая энергия является разностью между полной энергией системы и её энергией покоя. Иначе говоря, что кинетическая энергия будет частью полной энергии, которая обусловленная движением.

Давайте попробуем разобраться в понятии кинетической энергии тела. Для примера возьмем движение шайбы по льду и попробуем понять связь между величиной кинетической энергии и работой, которая должна быть выполнена, чтобы вывести шайбу из состояния покоя и привести ее в движение, имеющее некоторую скорость.

Пример

Играющий на льду хоккеист, ударив клюшкой по шайбе сообщает ей скорость, а так и кинетическую энергию. Сразу после удара клюшкой, шайба начинает очень быстрое движение, но постепенно ее скорость замедляется и наконец, она совсем останавливается. Это значит, что уменьшение скорости явилось результатом силы трения, происходящей между поверхностью и шайбой. Тогда сила трения будет направлена против движения и действия этой силы сопровождаются перемещением. Тело же использует имеющую механическую энергию, выполняя работу против силы трения.

Из этого примера мы видим, что кинетическая энергия будет той энергией, которую тело получает в результате своего движения.

Следовательно, кинетическая энергия тела, имеющая определенную массу, будет двигаться со скоростью равной той работе, которую должна выполнить сила, приложенная к покоящемуся телу, чтобы сообщить ему данную скорость:

Кинетическая энергия является энергией движущегося тела, которая равняется произведению массы тела на квадрат его скорости, деленной пополам.


Свойства кинетической энергии

К свойствам кинетической энергии относятся: аддитивность, инвариантность по отношению к повороту системы отсчета и сохранение.

Такое свойство, как аддитивность являет собой кинетическую энергию механической системы, которая слагается из материальных точек и будет равна сумме кинетических энергий всех материальных точек, которые входят в эту систему.

Свойство инвариантности по отношению к повороту системы отсчета обозначает, что кинетическая энергия не зависит от положения точки и направления её скорости. Ее зависимость распространяется лишь от модуля или от квадрата её скорости.

Свойство сохранения обозначает, что кинетическая энергия при взаимодействиях, изменяющих лишь механические характеристики системы, совершенно не изменяется.

Это свойство неизменно по отношению к преобразованиям Галилея. Свойства сохранения кинетической энергии и второго закона Ньютона будет вполне достаточно, для выведения математической формулы кинетической энергии.

Соотношение кинетической и внутренней энергии

Но существует такая интересная дилемма, как то, что кинетическая энергия может быть зависимой от того, с каких позиций рассматривать эту систему. Если, например, мы берем объект, который можно рассмотреть только под микроскопом, то, как единое целое, это тело неподвижно, хотя существует и внутренняя энергия. При таких условиях кинетическая энергия появляется только тогда, когда это тело движется, как единое целое.

То же тело, если рассматривать на микроскопическом уровне, обладает внутренней энергией, обусловленной движением атомов и молекул, из которых оно состоит. А абсолютная температура такого тела будет пропорциональна средней кинетической энергии такого движения атомов и молекул.

Кинетической энергией тела называют физическую величину, которая равна половине произведения массы тела на его скорость в квадрате. Это энергия движения, она эквивалентна той работе, которую должна совершить сила, приложенная к телу в состоянии покоя, для того, чтобы сообщить ему заданную скорость. После удара кинетическая энергия может преобразоваться в иной вид энергии, например, в звуковую, световую или тепловую.

Утверждение, которое называют теоремой о кинетической энергии, говорит о том, что ее изменение является работой равнодействующей силы, приложенной к телу. Данная теорема справедлива всегда, даже если тело движется под действием непрерывно меняющейся силы, а ее направление не совпадает с направлением его перемещения.

Потенциальная энергия

Потенциальная энергия определяется не скоростью, а взаимным положением тел, например, относительно Земли. Данное понятие может быть введено только для тех сил, работа которых не зависит от траектории движения тела, а определяется только его начальным и конечным положениями. Такие силы называют консервативными, их работа равна нулю, если тело перемещается по замкнутой траектории.

Консервативные силы и потенциальная энергия

Сила тяжести и сила упругости являются консервативными, для них можно ввести понятие потенциальной энергии. Физический смысл имеет не сама потенциальная энергия, а ее изменение при перемещении тела из одного положения в другое.

Изменение потенциальной энергии тела в поле силы тяжести, взятое с противоположным знаком, равно работе, которую совершает сила для перемещения тела. При упругой деформации потенциальная энергия зависит от взаимодействия частей тела друг с другом. Обладая определенным запасом потенциальной энергии, сжатая или растянутая пружина может привести в движение тело, которое к ней прикреплено, то есть сообщить ему кинетическую энергию.

Помимо сил упругости и тяжести свойством консервативности обладают другие виды сил, например, сила электростатического взаимодействия заряженных тел. Для силы трения понятие потенциальной энергии нельзя ввести, ее работа будет зависеть от пройденного пути.